arXiv daily

Information Theory (cs.IT)

Tue, 02 May 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Mon, 10 Apr 2023
1.Integrated Sensing and Communication in Coordinated Cellular Networks

Authors:Dongfang Xu, Chang Liu, Shenghui Song, Derrick Wing Kwan Ng

Abstract: Integrated sensing and communication (ISAC) has recently merged as a promising technique to provide sensing services in future wireless networks. In the literature, numerous works have adopted a monostatic radar architecture to realize ISAC, i.e., employing the same base station (BS) to transmit the ISAC signal and receive the echo. Yet, the concurrent information transmission causes severe self-interference (SI) to the radar echo at the BS which cannot be effectively suppressed. To overcome this difficulty, in this paper, we propose a coordinated cellular network-supported multistatic radar architecture to implement ISAC. In particular, among all the coordinated BSs, we select a BS as the multistatic receiver to receive the sensing echo signal, while the other BSs act as the multistatic transmitters to collaborate with each other to facilitate cooperative ISAC. This allows us to spatially separate the ISAC signal transmission and radar echo reception, intrinsically circumventing the problem of SI. To this end, we jointly optimize the transmit and receive beamforming policy to minimize the sensing beam pattern mismatch error subject to both the communication and sensing quality-of-service requirements. The resulting non-convex optimization problem is tackled by a low-complexity alternating optimization-based suboptimal algorithm. Simulation results showed that the proposed scheme outperforms the two baseline schemes adopting conventional designs. Moreover, our results confirm that the proposed architecture is promising in achieving high-quality ISAC.

2.Rate-Compatible Polar Codes for Automorphism Ensemble Decoding

Authors:Marvin Geiselhart, Jannis Clausius, Stephan ten Brink

Abstract: Recently, automorphism ensemble decoding (AED) has drawn research interest as a more computationally efficient alternative to successive cancellation list (SCL) decoding of polar codes. Although AED has demonstrated superior performance for specific code parameters, a flexible code design that can accommodate varying code rates does not yet exist. This work proposes a theoretical framework for constructing rate-compatible polar codes with a prescribed automorphism group, which is a key requirement for AED. We first prove that a one-bit granular sequence with useful automorphisms cannot exist. However, by allowing larger steps in the code dimension, flexible code sequences can be constructed. An explicit synthetic channel ranking based on the $\beta$-expansion is then proposed to ensure that all constructed codes possess the desired symmetries. Simulation results, covering a broad range of code dimensions and blocklengths, show a performance comparable to that of 5G polar codes under cyclic redundancy check (CRC)-aided SCL decoding, however, with lower complexity.

3.Universal MIMO Jammer Mitigation via Secret Temporal Subspace Embeddings

Authors:Gian Marti, Christoph Studer

Abstract: MIMO processing enables jammer mitigation through spatial filtering, provided that the receiver knows the spatial signature of the jammer interference. Estimating this signature is easy for barrage jammers that transmit continuously and with static signature, but difficult for more sophisticated jammers: Smart jammers may deliberately suspend transmission when the receiver tries to estimate their spatial signature, they may use time-varying beamforming to continuously change their spatial signature, or they may stay mostly silent and jam only specific instants (e.g., transmission of control signals). To deal with such smart jammers, we propose MASH, the first method that indiscriminately mitigates all types of jammers: Assume that the transmitter and receiver share a common secret. Based on this secret, the transmitter embeds (with a linear time-domain transform) its signal in a secret subspace of a higher-dimensional space. The receiver applies a reciprocal linear transform to the receive signal, which (i) raises the legitimate transmit signal from its secret subspace and (ii) provably transforms any jammer into a barrage jammer, which makes estimation and mitigation via MIMO processing straightforward. We show the efficacy of MASH for data transmission in the massive multi-user MIMO uplink.

4.A Direct Construction of Type-II $Z$ complementary code set with arbitrarily large codes

Authors:Rajen Kumar, Prashant Kumar Srivastava, Sudhan Majhi

Abstract: In this paper, we propose a construction of type-II $Z$-complementary code set (ZCCS), using a multi-variable function with Hamiltonian paths and disjoint vertices. For a type-I $(K,M,Z,N)$-ZCCS, $K$ is bounded by $K \leq M \left\lfloor \frac{N}{Z}\right\rfloor$. However, the proposed type-II ZCCS provides $K = M(N-Z+1)$. The proposed type-II ZCCS provides a larger number of codes compared to that of type-I ZCCS. Further, the proposed construction can generate the Kernel of complete complementary code (CCC) as $(p,p,p)$-CCC, for any integral value of $p\ge2$.

5.Next-Generation Full Duplex Networking System Empowered by Reconfigurable Intelligent Surfaces

Authors:Yingyang Chen, Yuncong Li, Miaowen Wen, Duoying Zhang, Bingli Jiao, Zhiguo Ding, Theodoros A. Tsiftsis, H. Vincent Poor

Abstract: Full duplex (FD) radio has attracted extensive attention due to its co-time and co-frequency transceiving capability. {However, the potential gain brought by FD radios is closely related to the management of self-interference (SI), which imposes high or even stringent requirements on SI cancellation (SIC) techniques. When the FD deployment evolves into next-generation mobile networking, the SI problem becomes more complicated, significantly limiting its potential gains.} In this paper, we conceive a multi-cell FD networking scheme by deploying a reconfigurable intelligent surface (RIS) at the cell boundary to configure the radio environment proactively. To achieve the full potential of the system, we aim to maximize the sum rate (SR) of multiple cells by jointly optimizing the transmit precoding (TPC) matrices at FD base stations (BSs) and users and the phase shift matrix at RIS. Since the original problem is non-convex, we reformulate and decouple it into a pair of subproblems by utilizing the relationship between the SR and minimum mean square error (MMSE). The optimal solutions of TPC matrices are obtained in closed form, while both complex circle manifold (CCM) and successive convex approximation (SCA) based algorithms are developed to resolve the phase shift matrix suboptimally. Our simulation results show that introducing an RIS into an FD networking system not only improves the overall SR significantly but also enhances the cell edge performance prominently. More importantly, we validate that the RIS deployment with optimized phase shifts can reduce the requirement for SIC and the number of BS antennas, which further reduces the hardware cost and power consumption, especially with a sufficient number of reflecting elements. As a result, the utilization of an RIS enables the originally cumbersome FD networking system to become efficient and practical.

6.Spectral approach to the communication complexity of multi-party key agreement

Authors:Geoffroy Caillat-Grenier, Andrei Romashchenko

Abstract: In multi-party key agreement protocols it is assumed that the parties are given correlated input data and should agree on a common secret key so that the eavesdropper cannot obtain any information on this key by listening to the communications between the parties. We consider the one-shot setting, when there is no ergodicity assumption on the input data. It is known that the optimal size of the secret key can be characterized in terms of the mutual information between different combinations of the input data sets, and the optimal key can be produced with the help of the omniscience protocol. However, the optimal communication complexity of this problem remains unknown. We show that the communication complexity of the omniscience protocol is optimal, at least for some complexity profiles of the input data, in the setting with restricted interaction between parties (the simultaneous messages model). We also provide some upper and lower bounds for communication complexity for other communication problems. Our proof technique combines information-theoretic inequalities and the spectral method.

7.On Strong Secrecy for Multiple Access Channel with States and Causal CSI

Authors:Yiqi Chen, Tobias Oechtering, Mikael Skoglund, Yuan Luo

Abstract: Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. An inner bound of the capacity is provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are studied. The first one uses backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy reproduction of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.

8.Trade-off Between Optimal Efficiency and Envelope Correlation Coefficient for Antenna Clusters

Authors:Vojtech Neuman, Miloslav Capek, Lukas Jelinek, Anu Lehtovuori, Ville Viikari

Abstract: This paper introduces a theory for assessing and optimizing the multiple-input-multiple-output performance of multi-port cluster antennas in terms of efficiency, channel correlation, and power distribution. A method based on a convex optimization of feeding coefficients is extended with additional constraints allowing the user to control a ratio between the power radiated by the clusters. The formulation of the problem makes it possible to simultaneously optimize total efficiency and channel correlation with a fixed ratio between power radiated by the clusters, thus examining a trade-off between these parameters. It is shown that channel correlation, total efficiency, and allocation of radiated power are mutually conflicting parameters. The trade-offs are shown and discussed. The theory is demonstrated on a four-element antenna array and on a mobile terminal antenna.

9.A Direct Construction of Optimal Symmetrical Z-Complementary Code Sets of Prime Power Lengths

Authors:Praveen Kumar, Sudhan Majhi, Subhabrata Paul

Abstract: This paper presents a direct construction of an optimal symmetrical Z-complementary code set (SZCCS) of prime power lengths using a multi-variable function (MVF). SZCCS is a natural extension of the Z-complementary code set (ZCCS), which has only front-end zero correlation zone (ZCZ) width. SZCCS has both front-end and tail-end ZCZ width. SZCCSs are used in developing optimal training sequences for broadband generalized spatial modulation systems over frequency-selective channels because they have ZCZ width on both the front and tail ends. The construction of optimal SZCCS with large set sizes and prime power lengths is presented for the first time in this paper. Furthermore, it is worth noting that several existing works on ZCCS and SZCCS can be viewed as special cases of the proposed construction.

10.Complementary Graph Entropy, AND Product, and Disjoint Union of Graphs

Authors:Nicolas Charpenay, Maël le Treust, Aline Roumy

Abstract: In the zero-error Slepian-Wolf source coding problem, the optimal rate is given by the complementary graph entropy $\overline{H}$ of the characteristic graph. It has no single-letter formula, except for perfect graphs, for the pentagon graph with uniform distribution $G_5$, and for their disjoint union. We consider two particular instances, where the characteristic graphs respectively write as an AND product $\wedge$, and as a disjoint union $\sqcup$. We derive a structural result that equates $\overline{H}(\wedge \: \cdot)$ and $\overline{H}(\sqcup \: \cdot)$ up to a multiplicative constant, which has two consequences. First, we prove that the cases where $\overline{H}(\wedge \:\cdot)$ and $\overline{H}(\sqcup \: \cdot)$ can be linearized coincide. Second, we determine $\overline{H}$ in cases where it was unknown: products of perfect graphs; and $G_5 \wedge G$ when $G$ is a perfect graph, using Tuncel et al.'s result for $\overline{H}(G_5 \sqcup G)$. The graphs in these cases are not perfect in general.