arXiv daily

Information Theory (cs.IT)

Wed, 09 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Mon, 10 Apr 2023
1.Maximizing Network Connectivity for UAV Communications via Reconfigurable Intelligent Surfaces

Authors:Mohammed S. Al-Abiad, Mohammad Javad-Kalbasi, Shahrokh Valaee

Abstract: It is anticipated that integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surfaces (RISs), resulting in RIS-assisted UAV networks, will offer improved network connectivity against node failures for the beyond 5G networks. In this context, we utilize a RIS to provide path diversity and alternative connectivity options for information flow from user equipment (UE) to UAVs by adding more links to the network, thereby maximizing its connectivity. This paper employs the algebraic connectivity metric, which is adjusted by the reflected links of the RIS, to formulate the problem of maximizing the network connectivity in two cases. First, we consider formulating the problem for one UE, which is solved optimally using a linear search. Then, we consider the problem of a more general case of multiple UEs, which has high computational complexity. To tackle this problem, we formulate the problem of maximizing the network connectivity as a semi-definite programming (SDP) optimization problem that can be solved efficiently in polynomial time. In both cases, our proposed solutions find the best combination between UE(s) and UAVs through the RIS. As a result, it tunes the phase shifts of the RIS to direct the signals of the UEs to the appropriate UAVs, thus maximizing the network connectivity. Simulation results are conducted to assess the performance of the proposed solutions compared to the existing solutions.

2.New Constructions of Mutually Orthogonal Complementary Sets and Z-Complementary Code Sets Based on Extended Boolean Functions

Authors:Hongyang Xiao, Xiwang Cao

Abstract: Mutually orthogonal complementary sets (MOCSs) and Z-complementary code sets (ZCCSs) have many applications in practical scenarios such as synthetic aperture imaging systems and multi-carrier code division multiple access (MC-CDMA) systems. With the aid of extended Boolean functions (EBFs), in this paper, we first propose a direct construction of MOCSs with flexible lengths, and then propose a new construction of ZCCSs. The proposed MOCSs cover many existing lengths and have non-power-of-two lengths when q = 2. Our presented second construction can generate optimal ZCCSs meeting the set size upper bound. Note that the proposed two constructions are direct without the aid of any special sequence, which is suitable for rapid hardware generation.