arXiv daily

Information Theory (cs.IT)

Tue, 27 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Mon, 10 Apr 2023
1.Probability of Error for Optimal Codes in a Reconfigurable Intelligent Surface Aided URLLC System

Authors:Likun Sui, Zihuai Lin

Abstract: The lower bound on the decoding error probability for the optimal code given a signal-to-noise ratio and a code rate are investigated in this letter for the reconfigurable intelligent surface (RIS) communication system over a Rician fading channel at the short blocklength regime, which is the key characteristic of ultra-reliable low-latency communications (URLLC) to meet the need for strict adherence to quality of service (QoS) requirements. Sphere packing technique is used to derive our main results. The Wald sequential t-test lemma and the Gaussian-Chebyshev quadrature are the main tools to obtain the closed-form expression for the lower bound. Numerical results are provided to validate our results and demonstrate the tightness of our results compared to the Polyanskiy-Poor-Verdu (PPV) bound.

2.An Efficient Decomposition Algorithm for Large-Scale Network Slicing

Authors:Wei-Kun Chen, Ya-Feng Liu, Rui-Jin Zhang, Yu-Hong Dai, Zhi-Quan Luo

Abstract: In this paper, we consider the network slicing (NS) problem which attempts to map multiple customized virtual network requests to a common shared network infrastructure and allocate network resources to meet diverse service requirements. We propose an efficient decomposition algorithm for solving this NP-hard problem. The proposed algorithm decomposes the large-scale hard NS problem into two relatively easy function placement (FP) and traffic routing (TR) subproblems and iteratively solves them enabling information feedback between each other, which makes it particularly suitable to solve large-scale problems. Specifically, the FP subproblem is to place service functions into cloud nodes in the network, and solving it can return a function placement strategy based on which the TR subproblem is defined; and the TR subproblem is to find paths connecting two nodes hosting two adjacent functions in the network, and solving it can either verify that the solution of the FP subproblem is an optimal solution of the original problem, or return a valid inequality to the FP subproblem that cuts off the current infeasible solution. The proposed algorithm is guaranteed to find the global solution of the NS problem. We demonstrate the effectiveness and efficiency of the proposed algorithm via numerical experiments.

3.Linear One-Bit Precoding in Massive MIMO: Asymptotic SEP Analysis and Optimization

Authors:Zheyu Wu, Junjie Ma, Ya-Feng Liu, A. Lee Swindlehurst

Abstract: This paper focuses on the analysis and optimization of a class of linear one-bit precoding schemes for a downlink massive MIMO system under Rayleigh fading channels. The considered class of linear one-bit precoding is fairly general, including the well-known matched filter (MF) and zero-forcing (ZF) precoding schemes as special cases. Our analysis is based on an asymptotic framework where the numbers of transmit antennas and users in the system grow to infinity with a fixed ratio. We show that, under the asymptotic assumption, the symbol error probability (SEP) of the considered linear one-bit precoding schemes converges to that of a scalar ``signal plus independent Gaussian noise'' model. This result enables us to provide accurate predictions for the SEP of linear one-bit precoding. Additionally, we also derive the optimal linear one-bit precoding scheme within the considered class based on our analytical results. Simulation results demonstrate the excellent accuracy of the SEP prediction and the optimality of the derived precoder.

4.Energy-Efficient MIMO Integrated Sensing and Communications with On-off Non-transmission Power

Authors:Guanlin Wu, Yuan Fang, Jie Xu, Zhiyong Feng, Shuguang Cui

Abstract: This paper investigates the energy efficiency of a multiple-input multiple-output (MIMO) integrated sensing and communications (ISAC) system, in which one multi-antenna base station (BS) transmits unified ISAC signals to a multi-antenna communication user (CU) and at the same time use the echo signals to estimate an extended target. We focus on one particular ISAC transmission block and take into account the practical on-off non-transmission power at the BS. Under this setup, we minimize the energy consumption at the BS while ensuring a minimum average data rate requirement for communication and a maximum Cram\'er-Rao bound (CRB) requirement for target estimation, by jointly optimizing the transmit covariance matrix and the ``on'' duration for active transmission. We obtain the optimal solution to the rate-and-CRB-constrained energy minimization problem in a semi-closed form. Interestingly, the obtained optimal solution is shown to unify the spectrum-efficient and energy-efficient communications and sensing designs. In particular, for the special MIMO sensing case with rate constraint inactive, the optimal solution follows the isotropic transmission with shortest ``on'' duration, in which the BS radiates the required sensing energy by using sufficiently high power over the shortest duration. For the general ISAC case, the optimal transmit covariance solution is of full rank and follows the eigenmode transmission based on the communication channel, while the optimal ``on'' duration is determined based on both the rate and CRB constraints. Numerical results show that the proposed ISAC design achieves significantly reduced energy consumption as compared to the benchmark schemes based on isotropic transmission, always-on transmission, and sensing or communications only designs, especially when the rate and CRB constraints become stringent.

5.Codes and Orbit Covers of Finite Abelian Groups

Authors:Rameez Raja

Abstract: It is well known that the discrete analogue of a lattice is a linear code which is a vector subspace of Hamming space $\mathbb{F}^n$. The set $\mathbb{F}$ is a finite field and $n \in \mathbb{Z}_{>0}$. Our attempt is to construct a class of lattices such that its discrete analogues are variable length non-linear codes. Let $\mathcal{G}$ and $\mathcal{H}$ be two finite groups, and let $\mathcal{S}$ be a fixed set of generators for $\mathcal{G}$. The homomorphism code is defined as the set of all homomorphisms from $\mathcal{G}$ to $\mathcal{H}$, denoted by, $\mathcal{C} = Hom(\mathcal{G}, \mathcal{H})$. To each homomorphism $\varphi$ between $\mathcal{G}$ and $\mathcal{H}$, a codeword $c_\varphi$ is associated, it is a vector of values of $\varphi$ on the generators in $\mathcal{S}$, that is, $c_\varphi = (\varphi(s_1), \varphi(s_2), \dots, \varphi(s_k))$, where $\varphi(s_i)$ is the image of $s_i \in \mathcal{S}$, $1 \leq i \leq k$. We provide a design to construct a variable length binary non-linear code called as automorphism orbit code from a finite abelian $p$-group of rank more than 1, where $p$ is a prime number. For each finite abelian $p$-group, the codewords of the automorphism orbit code are variable length codewords called as automorphism orbit codewords. Note that homomorphism codes are determined by homomorphisms between groups, whereas automorphism orbit codes are specified by partitions of a number, orbits of a group action, homomorphisms and automorphisms of groups. We make use of elements of $Hom(\mathcal{G}, \mathcal{H})$ to present a cover relation for bit strings of codewords of an automorphism orbit code and formulate a lattice of variable length non-linear codes. Finally, we discuss some information related to the future research work on connections to representation theory of groups and algebras.

6.Mutual Information Rate of Gaussian and Truncated Gaussian Inputs on Intensity-Driven Signal Transduction Channels

Authors:Xuan Chen, Fei Ji, Miaowen Wen, Yu Huang, Andrew W. Eckford

Abstract: In this letter, we investigate the mutual information rate (MIR) achieved by an independent identically distributed (IID) Gaussian input on the intensity-driven signal transduction channel. Specifically, the asymptotic expression of the continuous-time MIR is given. Next, aiming at low computational complexity, we also deduce an approximately numerical solution for this MIR. Moreover, the corresponding lower and upper bounds that can be used to find the capacity-achieving input distribution parameters are derived in closed-form. Finally, simulation results show the accuracy of our analysis.

7.Task-oriented and Semantics-aware Communication Framework for Augmented Reality

Authors:Zhe Wang, Yansha Deng, A. Hamid Aghvami

Abstract: Upon the advent of the emerging metaverse and its related applications in Augmented Reality (AR), the current bit-oriented network struggles to support real-time changes for the vast amount of associated information, hindering its development. Thus, a critical revolution in the Sixth Generation (6G) networks is envisioned through the joint exploitation of information context and its importance to the task, leading to a communication paradigm shift towards semantic and effectiveness levels. However, current research has not yet proposed any explicit and systematic communication framework for AR applications that incorporate these two levels. To fill this research gap, this paper presents a task-oriented and semantics-aware communication framework for augmented reality (TSAR) to enhance communication efficiency and effectiveness in 6G. Specifically, we first analyse the traditional wireless AR point cloud communication framework and then summarize our proposed semantic information along with the end-to-end wireless communication. We then detail the design blocks of the TSAR framework, covering both semantic and effectiveness levels. Finally, numerous experiments have been conducted to demonstrate that, compared to the traditional point cloud communication framework, our proposed TSAR significantly reduces wireless AR application transmission latency by 95.6%, while improving communication effectiveness in geometry and color aspects by up to 82.4% and 20.4%, respectively.

8.An information theoretic necessary condition for perfect reconstruction

Authors:Idris Delsol, Olivier Rioul, Julien Béguinot, Victor Rabiet, Antoine Souloumiac

Abstract: This article proposes a new information theoretic necessary condition for reconstructing a discrete random variable $X$ based on the knowledge of a set of discrete functions of $X$. The reconstruction condition is derived from the Shannon's Lattice of Information (LoI) \cite{Shannon53} and two entropic metrics proposed respectively by Shannon and Rajski. This theoretical material being relatively unknown and/or dispersed in different references, we provide a complete and synthetic description of the LoI concepts like the total, common and complementary informations with complete proofs. The two entropic metrics definitions and properties are also fully detailled and showed compatible with the LoI structure. A new geometric interpretation of the Lattice structure is then investigated that leads to a new necessary condition for reconstructing the discrete random variable $X$ given a set $\{ X_0$,...,$X_{n-1} \}$ of elements of the lattice generated by $X$. Finally, this condition is derived in five specific examples of reconstruction of $X$ from a set of deterministic functions of $X$: the reconstruction of a symmetric random variable from the knowledge of its sign and of its absolute value, the reconstruction of a binary word from a set of binary linear combinations, the reconstruction of an integer from its prime signature (Fundamental theorem of arithmetics) and from its reminders modulo a set of coprime integers (Chinese reminder theorem), and the reconstruction of the sorting permutation of a list from a set of 2-by-2 comparisons. In each case, the necessary condition is shown compatible with the corresponding well-known results.