Optimization and Control (math.OC)
Mon, 17 Jul 2023
1.Convex Bi-Level Optimization Problems with Non-smooth Outer Objective Function
Authors:Roey Merchav, Shoham Sabach
Abstract: In this paper, we propose the Bi-Sub-Gradient (Bi-SG) method, which is a generalization of the classical sub-gradient method to the setting of convex bi-level optimization problems. This is a first-order method that is very easy to implement in the sense that it requires only a computation of the associated proximal mapping or a sub-gradient of the outer non-smooth objective function, in addition to a proximal gradient step on the inner optimization problem. We show, under very mild assumptions, that Bi-SG tackles bi-level optimization problems and achieves sub-linear rates both in terms of the inner and outer objective functions. Moreover, if the outer objective function is additionally strongly convex (still could be non-smooth), the outer rate can be improved to a linear rate. Last, we prove that the distance of the generated sequence to the set of optimal solutions of the bi-level problem converges to zero.
2.Global convergence of a BFGS-type algorithm for nonconvex multiobjective optimization problems
Authors:L. F. Prudente, D. R. Souza
Abstract: We propose a modified BFGS algorithm for multiobjective optimization problems with global convergence, even in the absence of convexity assumptions on the objective functions. Furthermore, we establish the superlinear convergence of the method under usual conditions. Our approach employs Wolfe step sizes and ensures that the Hessian approximations are updated and corrected at each iteration to address the lack of convexity assumption. Numerical results shows that the introduced modifications preserve the practical efficiency of the BFGS method.
3.Robust Combinatorial Optimization Problems Under Budgeted Interdiction Uncertainty
Authors:Marc Goerigk, Mohammad Khosravi
Abstract: In robust combinatorial optimization, we would like to find a solution that performs well under all realizations of an uncertainty set of possible parameter values. How we model this uncertainty set has a decisive influence on the complexity of the corresponding robust problem. For this reason, budgeted uncertainty sets are often studied, as they enable us to decompose the robust problem into easier subproblems. We propose a variant of discrete budgeted uncertainty for cardinality-based constraints or objectives, where a weight vector is applied to the budget constraint. We show that while the adversarial problem can be solved in linear time, the robust problem becomes NP-hard and not approximable. We discuss different possibilities to model the robust problem and show experimentally that despite the hardness result, some models scale relatively well in the problem size.