arXiv daily

Quantum Physics (quant-ph)

Thu, 24 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Quantum mechanics is compatible with counterfactual definiteness

Authors:Janne V. Kujala, Ehtibar N. Dzhafarov

Abstract: Counterfactual definiteness (CFD) means that if some property is measured in some context, then the outcome of the measurement would have been the same had this property been measured in a different context. A context includes all other measurements made together with the one in question, and the spatiotemporal relations among them. The proviso for CFD is non-disturbance: any physical influence of the contexts on the property being measured is excluded by the laws of nature, so that no one measuring this property has a way of ascertaining its context. It is usually claimed that in quantum mechanics CFD does not hold, because if one assigns the same value to a property in all contexts it is measured in, one runs into a logical contradiction, or at least contravenes quantum theory and experimental evidence. We show that this claim is not substantiated if one takes into account that only one of the possible contexts can be a factual context, all other contexts being counterfactual. With this in mind, any system of random variables can be viewed as satisfying CFD. The concept of CFD is closely related to but distinct from that of noncontextuality, and it is the latter property that may or may not hold for a system, in particular being contravened by some quantum systems.

2.Wigner function properties for electromagnetic systems

Authors:E. E. Perepelkin, B. I. Sadovnikov, N. G. Inozemtseva, P. V. Afonin

Abstract: Using the Wigner-Vlasov formalism, an exact 3D solution of the Schr\"odinger equation for a scalar particle in an electromagnetic field is constructed. Electric and magnetic fields are non-uniform. According to the exact expression for the wave function, the search for two types of the Wigner functions is conducted. The first function is the usual Wigner function with a modified momentum. The second Wigner function is constructed on the basis of the Weyl-Stratonovich transform in papers [Phys. Rev. A 35 2791 (1987)] or [Phys. Rev. B 99 014423 (2019)]. It turns out that the second function, unlike the first one, has areas of negative values for wave functions with the Gaussian distribution (Hudson's theorem). On the one hand, knowing the Wigner functions allows one to find the distribution of the mean momentum vector field and the energy spectrum of the quantum system. On the other hand, within the framework of the Wigner-Vlasov formalism, the mean momentum distribution and the magnitude of the energy are initially known. Consequently, the mean momentum distributions and energy values obtained according to the Wigner functions can be compared with the exact momentum distribution and energy values. This paper presents this comparison and describes the differences. For the first Wigner function, an analog of the Moyal equation with an electromagnetic part and the Hamilton-Jacobi operator equation are obtained. An operator analogue of the {\guillemotleft}motion equation{\guillemotright} with electromagnetic interaction is constructed. For the second Vlasov equation, an operator expression for the Vlasov-Moyal approximation for systems with electromagnetic interaction is obtained.

3.Floquet Nonadiabatic Nuclear Dynamics with Photoinduced Lorenz-Like Force in Quantum Transport

Authors:Jingqi Chen, Wei Liu, Wenjie Dou

Abstract: In our recent paper [Mosallanejad et al., Phys. Rev. B 107(18), 184314, 2023], we have derived a Floquet electronic friction model to describe nonadiabatic molecular dynamics near metal surfaces in the presence of periodic driving. In this work, we demonstrate that Floquet driving can introduce an anti-symmetric electronic friction tensor in quantum transport, resulting in circular motion of the nuclei in the long time limit. Furthermore, we show that such a Lorentz-like force strongly affects nuclear motion: at lower voltage bias, Floquet driving can increase the temperature of nuclei; at larger voltage bias, Floquet driving can decrease the temperature of nuclei. In addition, Floquet driving can affect electron transport strenuously. Finally, we show that there is an optimal frequency that maximizes electron current. We expect that the Floquet electronic friction model is a powerful tool to study nonadiabatic molecular dynamics near metal surfaces under Floquet driving in complex systems.

4.Quantum interference between non-identical single particles

Authors:Keyu Su, Yi Zhong, Shanchao Zhang, Jianfeng Li, Chang-Ling Zou, Yunfei Wang, Hui Yan, Shi-Liang Zhu

Abstract: Quantum interference between identical single particles reveals the intrinsic quantum statistic nature of particles, which could not be interpreted through classical physics. Here, we demonstrate quantum interference between non-identical bosons using a generalized beam splitter based on a quantum memory. The Hong-Ou-Mandel type interference between single photons and single magnons with high visibility is demonstrated, and the crossover from the bosonic to fermionic quantum statistics is observed by tuning the beam splitter to be non-Hermitian. Moreover, multi-particle interference that simulates the behavior of three fermions by three input photons is realized. Our work extends the understanding of the quantum interference effects and demonstrates a versatile experimental platform for studying and engineering quantum statistics of particles.

5.Practical limitations on robustness and scalability of quantum Internet

Authors:Abhishek Sadhu, Meghana Ayyala Somayajula, Karol Horodecki, Siddhartha Das

Abstract: As quantum theory allows for information processing and computing tasks that otherwise are not possible with classical systems, there is a need and use of quantum Internet beyond existing network systems. At the same time, the realization of a desirably functional quantum Internet is hindered by fundamental and practical challenges such as high loss during transmission of quantum systems, decoherence due to interaction with the environment, fragility of quantum states, etc. We study the implications of these constraints by analyzing the limitations on the scaling and robustness of quantum Internet. Considering quantum networks, we present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes. Motivated by the power of abstraction in graph theory (in association with quantum information theory), we consider graph-theoretic quantifiers to assess network robustness and provide critical values of communication lines for viable communication over quantum Internet. In particular, we begin by discussing limitations on usefulness of isotropic states as device-independent quantum key repeaters which otherwise could be useful for device-independent quantum key distribution. We consider some quantum networks of practical interest, ranging from satellite-based networks connecting far-off spatial locations to currently available quantum processor architectures within computers, and analyze their robustness to perform quantum information processing tasks. Some of these tasks form primitives for delegated quantum computing, e.g., entanglement distribution and quantum teleportation. For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest such as constructing the network structure, finding the shortest path between a pair of end nodes, and optimizing the flow of resources at a node.

6.Uniqueness of quantum state over time function

Authors:Seok Hyung Lie, Nelly H. Y. Ng

Abstract: A fundamental asymmetry exists within the conventional framework of quantum theory between space and time, in terms of representing causal relations via quantum channels and acausal relations via multipartite quantum states. Such a distinction does not exist in classical probability theory. In effort to introduce this symmetry to quantum theory, a new framework has recently been proposed, such that dynamical description of a quantum system can be encapsulated by a static quantum state over time. In particular, Fullwood and Parzygnat recently proposed the state over time function based on the Jordan product as a promising candidate for such a quantum state over time function, by showing that it satisfies all the axioms required in the no-go result by Horsman et al. However, it was unclear if the axioms induce a unique state over time function. In this work, we demonstrate that the previously proposed axioms cannot yield a unique state over time function. In response, we therefore propose an alternative set of axioms that is operationally motivated, and better suited to describe quantum states over any spacetime regions beyond two points. By doing so, we establish the Fullwood-Parzygnat state over time function as the essentially unique function satisfying all these operational axioms.

7.Network-Device-Independent Certification of Causal Nonseparability

Authors:Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard

Abstract: Causal nonseparability is the property underlying quantum processes incompatible with a definite causal order. So far it has remained a central open question as to whether any process with a clear physical realisation can violate a causal inequality, so that its causal nonseparability can be certified in a device-independent way, as originally conceived. Here we present a method solely based on the observed correlations, which certifies the causal nonseparability of all the processes that can induce a causally nonseparable distributed measurement in a scenario with trusted quantum input states, as defined in [Dourdent et al., Phys. Rev. Lett. 129, 090402 (2022)]. This notably includes the celebrated quantum switch. This device-independent certification is achieved by introducing a network of untrusted operations, allowing one to self-test the quantum inputs on which the effective distributed measurement induced by the process is performed.

8.Quantum state tomography of photons polarization and path degrees of freedom

Authors:J. L. Montenegro Ferreira, B. de Lima Bernardo

Abstract: Quantum state tomography (QST), the process through which the density matrix of a quantum system is characterized from measurements of specific observables, is a fundamental pillar in the fields of quantum information and computation. We propose a simple QST method to reconstruct the density matrix of two qubits encoded in the polarization and path degrees of freedom of a single photon, which can be realized with a single linear-optical setup. We demonstrate that the density matrix can be fully described in terms of the one-point Stokes parameters related to the two possibles paths of the photon, together with a quantum version of the two-point Stokes parameters introduced here.

9.Coherence manipulation in asymmetry and thermodynamics

Authors:Tulja Varun Kondra, Ray Ganardi, Alexander Streltsov

Abstract: In the classical regime, thermodynamic state transformations are governed by the free energy. This is also called as the second law of thermodynamics. Previous works showed that, access to a catalytic system allows us to restore the second law in the quantum regime when we ignore coherence. However, in the quantum regime, coherence and free energy are two independent resources. Therefore, coherence places additional non-trivial restrictions on the the state transformations, that remains elusive. In order to close this gap, we isolate and study the nature of coherence, i.e. we assume access to a source of free energy. We show that allowing catalysis along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily. Additionally, any correlations between the system and the catalyst can be suppressed arbitrarily. Therefore, our results provide a key step in formulating a fully general law of quantum thermodynamics.

10.Astronomical interferometry using continuous variable quantum teleportation

Authors:Yunkai Wang, Yujie Zhang, Virginia O. Lorenz

Abstract: We propose a method to build an astronomical interferometer using continuous variable quantum teleportation to overcome the transmission loss between distant telescopes. The scheme relies on two-mode squeezed states shared by distant telescopes as entanglement resources, which are distributed using continuous variable quantum repeaters. We find the optimal measurement on the teleported states, which uses beam-splitters and photon-number-resolved detection. Compared to prior proposals relying on discrete states, our scheme has the advantages of using linear optics to implement the scheme without wasting stellar photons and making use of multiphoton events, which are regarded as noise in previous discrete schemes.

11.Matter relative to quantum hypersurfaces

Authors:Philipp A. Hoehn, Andrea Russo, Alexander R. H. Smith

Abstract: We explore the canonical description of a scalar field as a parameterized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces $\mathsf{X}$ relative to which the scalar field is described. This theory is quantized via the Dirac prescription and physical states of the theory are used to define conditional wave functionals $|\psi_\phi[\mathsf{X}]\rangle$ interpreted as the state of the field relative to the hypersurface $\mathsf{X}$, thereby extending the Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac observables and define a quantum deparameterization of the physical Hilbert space leading to a relational Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism. Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to exhibit the transformation properties of a quantum field under a larger class of transformations, which leads to a frame-dependent particle creation effect.

12.Quantum-enhanced magnetometry at optimal number density

Authors:Charikleia Troullinou, Vito Giovanni Lucivero, Morgan W. Mitchell

Abstract: We study the use of squeezed probe light and evasion of measurement back-action to enhance the sensitivity and measurement bandwidth of an optically-pumped magnetometer (OPM) at sensitivity-optimal atom number density. By experimental observation, and in agreement with quantum noise modeling, a spin-exchange-limited OPM probed with off-resonance laser light is shown to have an optimal sensitivity determined by density-dependent quantum noise contributions. Application of squeezed probe light boosts the OPM sensitivity beyond this laser-light optimum, allowing the OPM to achieve sensitivities that it cannot reach with coherent-state probing at any density. The observed quantum sensitivity enhancement at optimal number density is enabled by measurement back-action evasion.

13.Parallel-in-time quantum simulation via Page and Wootters quantum time

Authors:N. L. Diaz, Paolo Braccia, Martin Larocca, J. M. Matera, R. Rossignoli, M. Cerezo

Abstract: In the past few decades, researchers have created a veritable zoo of quantum algorithm by drawing inspiration from classical computing, information theory, and even from physical phenomena. Here we present quantum algorithms for parallel-in-time simulations that are inspired by the Page and Wooters formalism. In this framework, and thus in our algorithms, the classical time-variable of quantum mechanics is promoted to the quantum realm by introducing a Hilbert space of "clock" qubits which are then entangled with the "system" qubits. We show that our algorithms can compute temporal properties over $N$ different times of many-body systems by only using $\log(N)$ clock qubits. As such, we achieve an exponential trade-off between time and spatial complexities. In addition, we rigorously prove that the entanglement created between the system qubits and the clock qubits has operational meaning, as it encodes valuable information about the system's dynamics. We also provide a circuit depth estimation of all the protocols, showing an exponential advantage in computation times over traditional sequential in time algorithms. In particular, for the case when the dynamics are determined by the Aubry-Andre model, we present a hybrid method for which our algorithms have a depth that only scales as $\mathcal{O}(\log(N)n)$. As a by product we can relate the previous schemes to the problem of equilibration of an isolated quantum system, thus indicating that our framework enable a new dimension for studying dynamical properties of many-body systems.

14.Infinite Dimensional Asymmetric Quantum Channel Discrimination

Authors:Bjarne Bergh, Jan Kochanowski, Robert Salzmann, Nilanjana Datta

Abstract: We study asymmetric binary channel discrimination, for qantum channels acting on separable Hilbert spaces. We establish quantum Stein's lemma for channels for both adaptive and parallel strategies, and show that under finiteness of the geometric R\'enyi divergence between the two channels for some $\alpha > 1$, adaptive strategies offer no asymptotic advantage over parallel ones. One major step in our argument is to demonstrate that the geometric R\'enyi divergence satisfies a chain rule and is additive for channels also in infinite dimensions. These results may be of independent interest. Furthermore, we not only show asymptotic equivalence of parallel and adaptive strategies, but explicitly construct a parallel strategy which approximates a given adaptive $n$-shot strategy, and give an explicit bound on the difference between the discrimination errors for these two strategies. This extends the finite dimensional result from [B. Bergh et al., arxiv:2206.08350]. Finally, this also allows us to conclude, that the chain rule for the Umegaki relative entropy in infinite dimensions, recently shown in [O. Fawzi, L. Gao, and M. Rahaman, arxiv:2212.14700v2] given finiteness of the max divergence between the two channels, also holds under the weaker condition of finiteness of the geometric R\'enyi divergence. We give explicit examples of channels which show that these two finiteness conditions are not equivalent.