arXiv daily

Quantum Physics (quant-ph)

Tue, 04 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Approximating Quantum Lyapunov Exponents in Quantum Kicked Rotor

Authors:Varsha Gupta

Abstract: In this work, we study quantum chaos by focusing on the evolution of initially close states in the dynamics of the Quantum Kicked Rotor (QKR). We propose a novel measure, the Quantum Lyapunov Exponent (QLE), to quantify the degree of chaos in this quantum system, analogous to its classical counterpart. We begin by modeling the momentum space and then the QLE is computed through analyzing the fidelity between evolving states, offering insights into the quantum chaotic behavior. Furthermore, we extend our investigations to various initial states: localized, uniform, spreading, contracting and oscillating in momentum space. Our results unveil a diverse range of dynamical behaviors, highlighting the complex nature of quantum chaos. Finally, we propose an innovative optimization framework to represent a complex state as a superposition of the aforementioned states, which has potential implications for visualizing and understanding the dynamics of multifaceted quantum systems.

2.Arrival time from Hamiltonian with non-hermitian boundary term

Authors:Tajron Jurić, Hrvoje Nikolić

Abstract: We develop a new method for finding the quantum probability density of arrival at the detector. The evolution of the quantum state restricted to the region outside of the detector is described by a restricted Hamiltonian that contains a non-hermitian boundary term. The non-hermitian term is shown to be proportional to the flux of the probability current operator through the boundary, which implies that the arrival probability density is equal to the flux of the probability current.

3.Two-dimensional simulation of the spin-flip in the Kapitza-Dirac effect

Authors:Ping Ge, Sven Ahrens, Baifei Shen

Abstract: Many calculations in strong field quantum field theory are carried out by using a simple field geometry, often neglecting the spacial field envelope. In this article, we simulate the electron diffraction quantum dynamics of the Kapitza-Dirac effect in a Gaussian beam standing light wave. The two-dimensional simulation is computed in a relativistic framework, by solving the Dirac equation with the fast Fourier transform split operator method. Except the numerical propagation method, our results are obtained without applying approximations and demonstrate that a spin-flip in the Kapitza-Dirac effect is possible.

4.A 2 & 3 Player Scheme for Quantum Direct Communication

Authors:Theodore Andronikos, Alla Sirokofskich

Abstract: This paper introduces two information-theoretically secure protocols that achieve quantum secure direct communication between Alice and Bob in the first case, and among Alice, Bod and Charlie in the second case. Both protocols use the same novel method to embed the secret information in the entangled composite system of the players. The way of encoding the information is the main novelty of this paper and the distinguishing feature compared to previous works in the field. The advantage of this method is that it is easily extensible and can be generalized to a setting involving three, or even more, players, as demonstrated with the second protocol. This trait can be beneficial when two spatially separated players posses only part of the secret information that must be combined and transmitted to Alice in order for her to reveal the complete secret. Using the three player protocol, this task can be achieved in one go, without the need to apply a typical QSDC protocol twice, where Alice first receives Bob's information and afterwards Charlie's information. Another characteristic of both protocols is their simplicity and uniformity. The two player protocol relies on EPR pairs, and the three player protocol on GHZ triples, which can be easily prepared with our current technology. In the same vein, the local quantum circuits are similar or identical, and are easily constructible as they employ only Hadamard and CNOT gates.

5.Two-photon-transition superadiabatic passage in an nitrogen-vacancy center in diamond

Authors:Musang Gong, Min Yu, Yaoming Chu, Wei Chen, Qingyun Cao, Ning Wang, Jianming Cai, Ralf Betzholz, Luigi Giannelli

Abstract: Reaching a given target quantum state with high fidelity and fast operation speed close to the quantum limit represents an important goal in quantum information science. Here, we experimentally demonstrate superadiabatic quantum driving to achieve population transfer in a three-level solid-state spin system. Starting from traditional stimulated Raman adiabatic passage (STIRAP), our approach implements superadiabatic corrections to the STIRAP Hamiltonians with several paradigmatic pulse shapes. It requires no need of intense microwave pulses or long transfer times and shows enhanced robustness over pulse imperfections. These results might provide a useful tool for quantum information processing and coherent manipulations of quantum systems.

6.Preparation of matrix product states with log-depth quantum circuits

Authors:Daniel Malz, Georgios Styliaris, Zhi-Yuan Wei, J. Ignacio Cirac

Abstract: We consider preparation of matrix product states (MPS) via quantum circuits of local gates. We first prove that faithfully preparing translation-invariant normal MPS of $N$ sites requires a circuit depth $T=\Omega(\log N)$. We then introduce an algorithm based on the renormalization-group transformation to prepare normal MPS with an error $\epsilon$ in depth $T=O(\log (N/\epsilon))$, which is optimal. We also show that measurement and feedback leads to an exponential speed-up of the algorithm, to $T=O(\log\log (N/\epsilon))$. Measurements also allow one to prepare arbitrary translation-invariant MPS, including long-range non-normal ones, in the same depth. Finally, the algorithm naturally extends to inhomogeneous MPS.

7.Logic meets Wigner's Friend (and their Friends)

Authors:Alexandru Baltag, Sonja Smets

Abstract: We take a fresh look at Wigner's Friend thought-experiment and some of its more recent variants and extensions, such as the Frauchiger-Renner (FR) Paradox. We discuss various solutions proposed in the literature, focusing on a few questions: what is the correct epistemic interpretation of the multiplicity of state assignments in these scenarios; under which conditions can one include classical observers into the quantum state descriptions, in a way that is still compatible with traditional Quantum Mechanics?; under which conditions can one system be admitted as an additional 'observer' from the perspective of another background observer?; when can the standard axioms of multi-agent Epistemic Logic (that allow "knowledge transfer" between agents) be applied to quantum-physical observers? In the last part of the paper, we propose a new answer to these questions, sketch a particular formal implementation of this answer, and apply it to obtain a principled solution to Wigner Friend-type paradoxes.

8.Phase sensitivity of spatially broadband high-gain SU(1,1) interferometers

Authors:D. Scharwald, T. Meier, P. R. Sharapova

Abstract: Nonlinear interferometers are promising tools for quantum metrology, as they are characterized by an improved phase sensitivity scaling compared to linear interferometers operating with classical light. However, the multimodeness of the light generated in these interferometers results in the destruction of their phase sensitivity, requiring advanced interferometric configurations for multimode light. Moreover, in contrast to the single-mode case, time-ordering effects play an important role for the high-gain regime in the multimode scenario and must be taken into account for a correct estimation of the phase sensitivity. In this work, we present a theoretical description of spatially multimode SU(1,1) interferometers operating at low and high parametric gains. Our approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear interaction region. We focus on interferometers with diffraction compensation, where focusing elements such as a parabolic mirror are used to compensate for the divergence of the light. We investigate plane-wave and Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase sensitivity surpasses the standard shot-noise scaling and discuss the regimes where it approaches the Heisenberg scale. Finally, we arrive at insightful analytical expressions for the phase sensitivity that are valid for both low and high parametric gain and demonstrate how it depends on the number of spatial modes of the system.

9.Classically efficient regimes in measurement based quantum computation performed using diagonal two qubit gates and cluster measurements

Authors:Sahar Atallah, Michael Garn, Yukuan Tao, Shashank Virmani

Abstract: In a recent work arXiv:2201.07655v2 we showed that there is a constant $\lambda >0$ such that it is possible to efficiently classically simulate a quantum system in which (i) qudits are placed on the nodes of a graph, (ii) each qudit undergoes at most $D$ diagonal gates, (iii) each qudit is destructively measured in the computational basis or bases unbiased to it, and (iv) each qudit is initialised within $\lambda^{-D}$ of a diagonal state according to a particular distance measure. In this work we explicitly compute $\lambda$ for any two qubit diagonal gate, thereby extending the computation of arXiv:2201.07655v2 beyond CZ gates. For any finite degree graph this allows us to describe a two parameter family of pure entangled quantum states (or three parameter family of thermal states) which have a non-trivial classically efficiently simulatable "phase" for the permitted measurements, even though other values of the parameters may enable ideal cluster state quantum computation. The main the technical tool involves considering separability in terms of "cylindrical" sets of operators. We also consider whether a different choice of set can strengthen the algorithm, and prove that they are optimal among a broad class of sets, but also show numerically that outside this class there are choices that can increase the size of the classically efficient regime.

10.Open Quantum System Dynamics from Infinite Tensor Network Contraction

Authors:Valentin Link, Hong-Hao Tu, Walter T. Strunz

Abstract: Recently developed methods to compute dynamics of strongly coupled non-Markovian open systems are based on a representation of the so-called process tensor in terms of a tensor network, which can be contracted to matrix product state (MPS) form. We show that for Gaussian environments the stationarity of the bath response can be exploited in order to construct this MPS using infinite MPS evolution methods. The result structurally resembles open system evolution with auxiliary degrees of freedom, as in hierarchical or pseudomode methods. Here, however, these degrees of freedom are generated automatically by the MPS evolution algorithm. Furthermore, our algorithm for contracting the process tensor network leads to significant computational speed-ups for strong coupling problems over existing proposals.

11.Speedy Contraction of ZX Diagrams with Triangles via Stabiliser Decompositions

Authors:Mark Koch, Richie Yeung, Quanlong Wang

Abstract: Recent advances in classical simulation of Clifford+T circuits make use of the ZX calculus to iteratively decompose and simplify magic states into stabiliser terms. We improve on this method by studying stabiliser decompositions of ZX diagrams involving the triangle operation. We show that this technique greatly speeds up the simulation of quantum circuits involving multi-controlled gates which can be naturally represented using triangles. We implement our approach in the QuiZX library and demonstrate a significant simulation speed-up (up to multiple orders of magnitude) for random circuits and a variation of previously used benchmarking circuits. Furthermore, we use our software to contract diagrams representing the gradient variance of parametrised quantum circuits, which yields a tool for the automatic numerical detection of the barren plateau phenomenon in ans\"atze used for quantum machine learning. Compared to traditional statistical approaches, our method yields exact values for gradient variances and only requires contracting a single diagram. The performance of this tool is competitive with tensor network approaches, as demonstrated with benchmarks against the quimb library.

12.Security of entanglement-based QKD with realistic parametric down-conversion sources

Authors:K. S. Kravtsov

Abstract: The paper analyzes security aspects of practical entanglement-based quantum key distribution (QKD), namely, BBM92 or entanglement-based BB84 protocol. Similar to prepare-and-measure QKD protocols, practical implementations of the entanglement-based QKD have to rely upon non-ideal photon sources. A typical solution for entanglement generation is the spontaneous parametric down-conversion. However, this process creates not only single photon pairs, but also quantum states with more than two photons, which potentially may lead to security deterioration. We show that this effect does not impair the security of entanglement-based QKD systems. We also review the available security proofs and show that properties of the entanglement source have nothing to do with security degradation.

13.Empirical Sample Complexity of Neural Network Mixed State Reconstruction

Authors:Haimeng Zhao, Giuseppe Carleo, Filippo Vicentini

Abstract: Quantum state reconstruction using Neural Quantum States has been proposed as a viable tool to reduce quantum shot complexity in practical applications, and its advantage over competing techniques has been shown in numerical experiments focusing mainly on the noiseless case. In this work, we numerically investigate the performance of different quantum state reconstruction techniques for mixed states: the finite-temperature Ising model. We show how to systematically reduce the quantum resource requirement of the algorithms by applying variance reduction techniques. Then, we compare the two leading neural quantum state encodings of the state, namely, the Neural Density Operator and the positive operator-valued measurement representation, and illustrate their different performance as the mixedness of the target state varies. We find that certain encodings are more efficient in different regimes of mixedness and point out the need for designing more efficient encodings in terms of both classical and quantum resources.

14.ATOM: An Efficient Topology Adaptive Algorithm for Minor Embedding in Quantum Computing

Authors:Hoang M. Ngo, Tamer Kahveci, My T. Thai

Abstract: Quantum annealing (QA) has emerged as a powerful technique to solve optimization problems by taking advantages of quantum physics. In QA process, a bottleneck that may prevent QA to scale up is minor embedding step in which we embed optimization problems represented by a graph, called logical graph, to Quantum Processing Unit (QPU) topology of quantum computers, represented by another graph, call hardware graph. Existing methods for minor embedding require a significant amount of running time in a large-scale graph embedding. To overcome this problem, in this paper, we introduce a novel notion of adaptive topology which is an expandable subgraph of the hardware graph. From that, we develop a minor embedding algorithm, namely Adaptive TOpology eMbedding (ATOM). ATOM iteratively selects a node from the logical graph, and embeds it to the adaptive topology of the hardware graph. Our experimental results show that ATOM is able to provide a feasible embedding in much smaller running time than that of the state-of-the-art without compromising the quality of resulting embedding.

15.Superconducting Non-Reciprocity Based on Time-Modulated Coupled-Resonator Systems

Authors:Yi Zhuang, Chandrashekhar Gaikwad, Daria Kowsari, Kater Murch, Aravind Nagulu

Abstract: We present a unified approach for designing a diverse range of superconducting non-reciprocal components, including circulators, isolators, and uni-directional amplifiers, based on temporally-modulated coupled resonator networks. Our method leverages standard SQUID-based resonators as building blocks, arranged in various configurations such as series-coupled, wye-connected, and lattice-coupled resonators, to realize a wide range of on-chip non-reciprocal devices. Our theoretical studies demonstrated the effectiveness of the proposed approach, achieving circulators and isolators with near-zero insertion losses and isolation greater than 20 dB, and directional amplifiers with forward gain exceeding 10 dB and reverse isolation greater than 20 dB. To validate our findings, we implemented and measured a series-coupled three-resonator superconducting isolator using a single-layer superconducting process. At a base temperature of 20 mK, our device exhibited insertion loss of 1.3 dB in the forward direction, and isolation of up to 25 dB at the center frequency and greater than 15 dB across a bandwidth of 250 MHz in the reverse direction. Our approach promises to enable the design of a broad range of high-performance non-reciprocal devices for superconducting circuits.

16.Non-relativistic spatiotemporal quantum reference frames

Authors:Michael Suleymanov, Ismael L. Paiva, Eliahu Cohen

Abstract: Quantum reference frames have attracted renewed interest recently, as their exploration is relevant and instructive in many areas of quantum theory. Among the different types, position and time reference frames have captivated special attention. Here, we introduce and analyze a non-relativistic framework in which each system contains an internal clock, in addition to its external (spatial) degree of freedom and, hence, can be used as a spatiotemporal quantum reference frame. Among other applications of this framework, we show that even in simple scenarios with no interactions, the relative uncertainty between clocks affects the relative spatial spread of the systems.

17.Generalised linear response theory for the full quantum work statistics

Authors:Giacomo Guarnieri, Jens Eisert, Harry J. D. Miller

Abstract: We consider a quantum system driven out of equilibrium via a small Hamiltonian perturbation. Building on the paradigmatic framework of linear response theory, we derive an expression for the full generating function of the dissipated work. Remarkably, we find that all information about the distribution can be encoded in a single accessible quantity known as the relaxation function, thus opening up new ways to use phenomenological models to study non-equilibrium fluctuations in complex quantum systems. Our results establish a number of refined thermodynamic constraints on the work statistics that apply to regimes of small but arbitrarily fast protocols, and do not require assumptions such as slow driving or weak coupling to an environment. Finally, our approach uncovers a distinctly quantum signature in the work statistics that originates from underlying zero-point energy fluctuations. This causes an increased dispersion of the probability distribution at short driving times, a feature that can be probed in efforts to witness non-classical effects in quantum thermodynamics.

18.Systematic Computation of Braid Generator Matrix in Topological Quantum Computing

Authors:Abdellah Tounsi, Nacer Eddine Belaloui, Mohamed Messaoud Louamri, Amani Mimoun, Achour Benslama, Mohamed Taha Rouabah

Abstract: We present a systematic numerical method to compute the elementary braiding operations for topological quantum computation (TQC). Braiding non-Abelian anyons is a crucial technique in TQC, offering a topologically protected implementation of quantum gates. However, obtaining matrix representations for braid generators can be challenging, especially for systems with numerous anyons or complex fusion patterns. Our proposed method addresses this challenge, allowing for the inclusion of an arbitrary number of anyons per qubit or qudit. This approach serves as a fundamental component in a general topological quantum circuit simulator, facilitating the exploration and analysis of intricate quantum circuits within the TQC framework. We have implemented and tested the method using algebraic conditions. Furthermore, we provide a proof of concept by successfully reproducing the CNOT gate.