arXiv daily

Quantum Physics (quant-ph)

Thu, 13 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Quantum Simulation of Boson-Related Hamiltonians: Techniques, Effective Hamiltonian Construction, and Error Analysis

Authors:Bo Peng, Yuan Su, Daniel Claudino, Karol Kowalski, Guang Hao Low, Martin Roetteler

Abstract: Elementary quantum mechanics proposes that a closed physical system consistently evolves in a reversible manner. However, control and readout necessitate the coupling of the quantum system to the external environment, subjecting it to relaxation and decoherence. Consequently, system-environment interactions are indispensable for simulating physically significant theories. A broad spectrum of physical systems in condensed-matter and high-energy physics, vibrational spectroscopy, and circuit and cavity QED necessitates the incorporation of bosonic degrees of freedom, such as phonons, photons, and gluons, into optimized fermion algorithms for near-future quantum simulations. In particular, when a quantum system is surrounded by an external environment, its basic physics can usually be simplified to a spin or fermionic system interacting with bosonic modes. Nevertheless, troublesome factors such as the magnitude of the bosonic degrees of freedom typically complicate the direct quantum simulation of these interacting models, necessitating the consideration of a comprehensive plan. This strategy should specifically include a suitable fermion/boson-to-qubit mapping scheme to encode sufficiently large yet manageable bosonic modes, and a method for truncating and/or downfolding the Hamiltonian to the defined subspace for performing an approximate but highly accurate simulation, guided by rigorous error analysis. In this paper, we aim to provide such an exhaustive strategy. Specifically, we emphasize two aspects: (1) the discussion of recently developed quantum algorithms for these interacting models and the construction of effective Hamiltonians, and (2) a detailed analysis regarding a tightened error bound for truncating the bosonic modes for a class of fermion-boson interacting Hamiltonians.

2.Contextuality, Coherences, and Quantum Cheshire Cats

Authors:Jonte R. Hance, Ming Ji, Holger F. Hofmann

Abstract: We analyse the quantum Cheshire cat using contextuality theory, to see if this can tell us anything about how best to interpret this paradox. We show that this scenario can be analysed using the relation between three different measurements, which seem to result in a logical contradiction. We discuss how this contextual behaviour links to weak values, and coherences between prohibited states. Rather than showing a property of the particle is disembodied, the quantum Cheshire cat instead demonstrates the effects of these coherences, which are typically found in pre- and postselected systems.

3.Open quantum system in the indefinite environment

Authors:He Wang, Jin Wang

Abstract: In this paper, we investigate the interference engineering of the open quantum system, where the environment is made indefinite either through the use of an interferometer or the introduction of auxiliary qubits. The environments are modeled by fully connected qubit baths with exact analytical dynamics. As the system passes through the interferometer or is controlled by auxiliary qubits, it is propagated along different paths or their superpositions, leading to distinct interactions with the environment in each path. This results in the superposition of the environments, which can be detected through specific measurements that retain certain coherent information about the paths. Our results demonstrate that the indefiniteness of the environment can significantly enhance the quantum correlations. However, only the statistical mixture of the influences from the environments preserves provided that the path coherence is destructed. We also examine the serviceability of the indefiniteness as a resource for teleportation and quantum parameter estimation. Additionally, we discuss how to quantify the indefiniteness and the ways in which it affects the system's dynamics from the perspective of wave-particle-entanglement-ignorance complementarity. Overall, our study highlights the potential benefits of an indefinite environment in quantum information processing and sheds light on the fundamental principles underlying its effects.

4.Quantum control of a cat-qubit with bit-flip times exceeding ten seconds

Authors:Ulysse Réglade, Adrien Bocquet, Ronan Gautier, Antoine Marquet, Emanuele Albertinale, Natalia Pankratova, Mattis Hallén, Felix Rautschke, Lev-Arcady Sellem, Pierre Rouchon, Alain Sarlette, Mazyar Mirrahimi, Philippe Campagne-Ibarcq, Raphaël Lescanne, Sébastien Jezouin, Zaki Leghtas

Abstract: Binary classical information is routinely encoded in the two metastable states of a dynamical system. Since these states may exhibit macroscopic lifetimes, the encoded information inherits a strong protection against bit-flips. A recent qubit - the cat-qubit - is encoded in the manifold of metastable states of a quantum dynamical system, thereby acquiring bit-flip protection. An outstanding challenge is to gain quantum control over such a system without breaking its protection. If this challenge is met, significant shortcuts in hardware overhead are forecast for quantum computing. In this experiment, we implement a cat-qubit with bit-flip times exceeding ten seconds. This is a four order of magnitude improvement over previous cat-qubit implementations, and six orders of magnitude enhancement over the single photon lifetime that compose this dynamical qubit. This was achieved by introducing a quantum tomography protocol that does not break bit-flip protection. We prepare and image quantum superposition states, and measure phase-flip times above 490 nanoseconds. Most importantly, we control the phase of these superpositions while maintaining the bit-flip time above ten seconds. This work demonstrates quantum operations that preserve macroscopic bit-flip times, a necessary step to scale these dynamical qubits into fully protected hardware-efficient architectures.

5.Quantum Autoencoders for Learning Quantum Channel Codes

Authors:Lakshika Rathi, Stephen DiAdamo, Alireza Shabani

Abstract: This work investigates the application of quantum machine learning techniques for classical and quantum communication across different qubit channel models. By employing parameterized quantum circuits and a flexible channel noise model, we develop a machine learning framework to generate quantum channel codes and evaluate their effectiveness. We explore classical, entanglement-assisted, and quantum communication scenarios within our framework. Applying it to various quantum channel models as proof of concept, we demonstrate strong performance in each case. Our results highlight the potential of quantum machine learning in advancing research on quantum communication systems, enabling a better understanding of capacity bounds under modulation constraints, various communication settings, and diverse channel models.

6.Measurement induced transitions in non-Markovian free fermion ladders

Authors:Mikheil Tsitsishvili, Dario Poletti, Marcello Dalmonte, Giuliano Chiriacò

Abstract: Recently there has been an intense effort to understand measurement induced transitions, but we still lack a good understanding of non-Markovian effects on these phenomena. To that end, we consider two coupled chains of free fermions, one acting as the system of interest, and one as a bath. The bath chain is subject to Markovian measurements, resulting in an effective non-Markovian dissipative dynamics acting on the system chain which is still amenable to numerical studies in terms of quantum trajectories. Within this setting, we study the entanglement within the system chain, and use it to characterize the phase diagram depending on the ladder hopping parameters and on the measurement probability. For the case of pure state evolution, the system is in an area law phase when the internal hopping of the bath chain is small, while a non-area law phase appears when the dynamics of the bath is fast. The non-area law exhibits a logarithmic scaling of the entropy compatible with a conformal phase, but also displays linear corrections for the finite system sizes we can study. For the case of mixed state evolution, we instead observe regions with both area, and non-area scaling of the entanglement negativity. We quantify the non-Markovianity of the system chain dynamics and find that for the regimes of parameters we study, a stronger non-Markovianity is associated to a larger entanglement within the system.

7.Indistinguishability of identical bosons from a quantum information theory perspective

Authors:Matthias Englbrecht, Tristan Kraft, Christoph Dittel, Andreas Buchleitner, Geza Giedke, Barbara Kraus

Abstract: Using tools from quantum information theory, we present a general theory of indistinguishability of identical bosons in experiments consisting of passive linear optics followed by particle number detection. Our results do neither rely on additional assumptions on the input state of the interferometer, such as, for instance, a fixed mode occupation, nor on any assumption on the degrees of freedom that potentially make the particles distinguishable. We identify the expectation value of the projector onto the $N$-particle symmetric subspace as an operationally meaningful measure of indistinguishability, and derive tight lower bounds on it that can be efficiently measured in experiments. Moreover, we present a consistent definition of perfect distinguishability and characterize the corresponding set of states. In particular, we show that these states are diagonal in the computational basis up to a permutationally invariant unitary. Moreover, we find that convex combinations of states that describe partially distinguishable and perfectly indistinguishable particles can lead to perfect distinguishability, which itself is not preserved under convex combinations.

8.Aharonov-Bohm effect as a diffusion phenomenon

Authors:Charalampos Antonakos, Andreas F. Terzis

Abstract: This paper presents a hydrodynamical view of the Aharonov-Bohm effect, using Nelson's formulation of quantum mechanics. Our aim is to compare our results with other systems and gain a better understanding of the mysteries behind this effect, such as why the motion of a particle is affected in a region where there is no magnetic field. Some theories suggest that this effect is due to the non-local action of the magnetic field on the particle, or even the physical significance of vector potentials over magnetic fields. Our main purpose is to use Nelson's formulation to describe the effect and demonstrate that it can be explained by the direct action of the current surrounding the magnetic field region (i.e. a cylinder) on the particle outside of it. In this context, magnetic fields and vector potentials serve as tools for finding other fundamental quantities that arise from the interaction between two fields: the quantum background fields described by Nelson's quantum theory. Finally, we investigate the relationship between hidden variables and quantum fluctuations and their role in this phenomenon.

9.Numerical analysis of the influence of initial and external conditions on the association of artificial atoms

Authors:Chen Ran, Yuri Ozhigov

Abstract: The chemical dynamics scene is the most important application of computer simulation. We show that electrons jump between potential holes of different depths (new molecular orbits, hybrid atomic orbits with different energies) under the influence of temperature (phonons) and photon phenomena. To overcome exponentially increasing computational complexity. In our article we experimented with algorithms of state space selection.

10.Certification of two-qubit quantum systems with temporal Non-Contextuality inequality

Authors:Chellasamy Jebarathinam, Gautam Sharma, Sk Sazim, Remigiusz Augusiak

Abstract: Self-testing of quantum devices based on observed measurement statistics is a method to certify quantum systems using minimal resources. In Ref. [Phys. Rev. \textbf{A} 101, 032106 (2020)], a scheme based on observing measurement statistics that demonstrate Kochen-Specker contextuality has been shown to certify two-qubit entangled states and measurements without the requirement of spatial separation between the subsystems. However, this scheme assumes a set of compatibility conditions on the measurements which are crucial to demonstrating Kochen-Specker contextuality. In this work, we propose a self-testing protocol to certify the above two-qubit states and measurements without the assumption of the compatibility conditions, and at the same time without requiring the spatial separation between the subsystems. Our protocol is based on the observation of sequential correlations leading to the maximal violation of a temporal noncontextuality inequality. Moreover, our protocol is robust to small experimental errors or noise.

11.Analytically solvable many-body Rosen-Zener quantum battery

Authors:Wei-Xi Guo, Fang-Mei Yang, Fu-Quan Dou

Abstract: Quantum batteries are energy storage devices that satisfy quantum mechanical principles. How to obtain analytical solutions for quantum battery systems and achieve a full charging is a crucial element of the quantum battery. Here, we investigate the Rosen-Zener quantum battery with $N$ two-level systems, which includes atomic interactions and external driving field. The analytical solutions of the stored energy, changing power, energy quantum fluctuations, and von Neumann entropy are derived by employing the gauge transformation. We demonstrate that full charging process can be achieved when the external driving field strength and scanning period conforms to a quantitative relationship. The local maximum value of the final stored energy corresponds to the local minimum values of the final energy fluctuations and von Neumann entropy. Moreover, we find that the atomic interaction induces the quantum phase transition and the maximum stored energy of the quantum battery reaches the maximum value near the quantum phase transition point. Our result provides an insightful theoretical scheme to realize the efficient quantum battery.

12.Quantum many-body scars in dual unitary circuits

Authors:Leonard Logarić, Shane Dooley, Silvia Pappalardi, John Goold

Abstract: Dual-unitary circuits are a class of quantum systems for which exact calculations of various quantities are possible, even for circuits that are non-integrable. The array of known exact results paints a compelling picture of dual-unitary circuits as rapidly thermalising systems. However, in this work, we present a method to construct dual-unitary circuits for which some simple initial states fail to thermalise, despite the circuits being "maximally chaotic", ergodic and mixing. This is achieved by embedding quantum many-body scars in a circuit of arbitrary size and local Hilbert space dimension. We support our analytic results with numerical simulations showing the stark contrast in the rate of entanglement growth from an initial scar state compared to non-scar initial states. Our results are well suited to an experimental test, due to the compatibility of the circuit layout with the native structure of current digital quantum simulators.

13.Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s

Authors:Antoine Marquet, Antoine Essig, Joachim Cohen, Nathanaël Cottet, Anil Murani, Emanuele Abertinale, Simon Dupouy, Audrey Bienfait, Théau Peronnin, Sébastien Jezouin, Raphaël Lescanne, Benjamin Huard

Abstract: Cat qubits, for which logical $|0\rangle$ and $|1\rangle$ are coherent states $|\pm\alpha\rangle$ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantage so that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number $|\alpha|^2$. Large two-photon dissipation rate $\kappa_2$ ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate $\kappa_2/2\pi\approx 2~\mathrm{MHz}$. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between $|\alpha\rangle$ and $|-\alpha\rangle$ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active.

14.Quantum image rain removal: second-order photon number fluctuation correlations in the time domain

Authors:Yuge Li, Yunjie Xia, Deyang Duan

Abstract: Falling raindrops are usually considered purely negative factors for traditional optical imaging because they generate not only rain streaks but also rain fog, resulting in a decrease in the visual quality of images. However, this work demonstrates that the image degradation caused by falling raindrops can be eliminated by the raindrops themselves. The temporal second-order correlation properties of the photon number fluctuation introduced by falling raindrops has a remarkable attribute: the rain streak photons and rain fog photons result in the absence of a stable second-order photon number correlation, while this stable correlation exists for photons that do not interact with raindrops. This fundamental difference indicates that the noise caused by falling raindrops can be eliminated by measuring the second-order photon number fluctuation correlation in the time domain. The simulation and experimental results demonstrate that the rain removal effect of this method is even better than that of deep learning methods when the integration time of each measurement event is short. This high-efficient quantum rain removal method can be used independently or integrated into deep learning algorithms to provide front-end processing and high-quality materials for deep learning.

15.Isotopic control of the boron-vacancy spin defect in hexagonal boron nitride

Authors:T. Clua-Provost, A. Durand, Z. Mu, T. Rastoin, J. Fraunié, E. Janzen, H. Schutte, J. H. Edgar, G. Seine, A. Claverie, X. Marie, C. Robert, B. Gil, G. Cassabois, V. Jacques

Abstract: We report on electron spin resonance (ESR) spectroscopy of boron-vacancy (V$_\text{B}^-$) centers hosted in isotopically-engineered hexagonal boron nitride (hBN) crystals. We first show that isotopic purification of hBN with $^{15}$N yields a simplified and well-resolved hyperfine structure of V$_\text{B}^-$ centers, while purification with $^{10}$B leads to narrower ESR linewidths. These results establish isotopically-purified h$^{10}$B$^{15}$N crystals as the optimal host material for future use of V$_\text{B}^-$ spin defects in quantum technologies. Capitalizing on these findings, we then demonstrate optically-induced polarization of $^{15}$N nuclei in h$^{10}$B$^{15}$N, whose mechanism relies on electron-nuclear spin mixing in the V$_\text{B}^-$ ground state. This work opens up new prospects for future developments of spin-based quantum sensors and simulators on a two-dimensional material platform.

16.Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics

Authors:Victor Nikolaevich Mitryakhin, Jens-Christian Drawer, Hangyong Shan, Alexander Steinhoff, Matthias Florian, Lukas Lackner, Bo Han, Falk Eilenberger, Sefaattin Tongay, Kenji Watanabe, Takashi Taniguchi, Carlos Antón-Solanas, Ana Predojević, Christopher Gies, Martin Esmann, Christian Schneider

Abstract: Emitter dephasing is one of the key issues in the performance of solid-state single photon sources. Among the various sources of dephasing, acoustic phonons play a central role in adding decoherence to the single photon emission. Here, we demonstrate, that it is possible to tune and engineer the coherence of photons emitted from a single WSe$_2$ monolayer quantum dot via selectively coupling it to a spectral cavity resonance. We utilize an open cavity to demonstrate spectral enhancement, leveling and suppression of the highly asymmetric phonon sideband, finding excellent agreement with our microscopic theory. Most importantly, the impact of cavity tuning on the dephasing is directly assessed via optical interferometry, which clearly points out the capability to utilize light-matter coupling to steer and design dephasing and coherence of the emission properties of atomically thin crystals.

17.Towards a resolution of the spin alignment problem

Authors:Mohammad A. Alhejji, Emanuel Knill

Abstract: Consider minimizing the entropy of a mixture of states by choosing each state subject to constraints. If the spectrum of each state is fixed, we expect that in order to reduce the entropy of the mixture, we should make the states less distinguishable in some sense. Here, we study a class of optimization problems that are inspired by this situation and shed light on the relevant notions of distinguishability. The motivation for our study is the spin alignment conjecture introduced recently in Ref.~\cite{Leditzky2022a}. In the original version of the underlying problem, each state in the mixture is constrained to be a freely chosen state on a subset of \(n\) qubits tensored with a fixed state \(Q\) on each of the qubits in the complement. According to the conjecture, the entropy of the mixture is minimized by choosing the freely chosen state in each term to be a tensor product of projectors onto a fixed maximal eigenvector of \(Q\), which maximally ``aligns'' the terms in the mixture. We generalize this problem in several ways. First, instead of minimizing entropy, we consider maximizing arbitrary unitarily invariant convex functions such as Fan norms and Schatten norms. To formalize and generalize the conjectured required alignment, we define \textit{alignment} as a preorder on tuples of self-adjoint operators that is induced by majorization. We prove the generalized conjecture for Schatten norms of integer order, for the case where the freely chosen states are constrained to be classical, and for the case where only two states contribute to the mixture and \(Q\) is proportional to a projector. The last case fits into a more general situation where we give explicit conditions for maximal alignment. The spin alignment problem has a natural ``dual" formulation, versions of which have further generalizations that we introduce.

18.Solomon equations for qubit and two-level systems

Authors:Martin Spiecker, Andrei I. Pavlov, Alexander Shnirman, Ioan M. Pop

Abstract: We model and measure the combined relaxation of a qubit, a.k.a. central spin, coupled to a discrete two-level system (TLS) environment. We present a derivation of the Solomon equations starting from a general Lindblad equation for the qubit and an arbitrary number of TLSs. If the TLSs are much longer lived than the qubit, the relaxation becomes non-exponential. In the limit of large numbers of TLSs the populations are likely to follow a power law, which we illustrate by measuring the relaxation of a superconducting fluxonium qubit. Moreover, we show that the Solomon equations predict non-Poissonian quantum jump statistics, which we confirm experimentally.

19.Better sensing with variable-range interactions

Authors:Monika, Leela Ganesh Chandra Lakkaraju, Srijon Ghosh, Aditi Sen De

Abstract: The typical bound on parameter estimation, known as the standard quantum limit (SQL), can be surpassed by exploiting quantum resources such as entanglement. To estimate the magnetic probe field, we propose a quantum sensor based on a variable-range many-body quantum spin chain with a moderate transverse magnetic field. We report the threefold benefits of employing a long-range system as a quantum sensor. Firstly, sensors with quasi long-range interactions can always beat SQL for all values of the coordination number while a sensor with long-range interactions does not have this ubiquitous quantum advantage. Secondly, a long-range Hamiltonian outperforms a nearest-neighbor (NN) Hamiltonian in terms of estimating precision. Finally, we observe that the system with long-range interactions can go below SQL in the presence of a high temperature of the initial state while sensors having NN interactions cannot. Furthermore, a sensor based on the long-range Ising Hamiltonian proves to be robust against impurities in the magnetic field and when the time-inhomogeneous dephasing noise acts during interaction of the probe with the system.

20.Reliability of Noisy Quantum Computing Devices

Authors:Samudra Dasgupta, Travis S. Humble

Abstract: Noisy intermediate-scale quantum (NISQ) devices are valuable platforms for testing the tenets of quantum computing, but these devices are susceptible to errors arising from de-coherence, leakage, cross-talk and other sources of noise. This raises concerns for ensuring the stability of program results when using NISQ devices as strategies for mitigating errors generally require well-characterized and reliable error models. Here, we quantify the reliability of NISQ devices by assessing the necessary conditions for generating stable results within a given tolerance. We use similarity metrics derived from device characterization data to analyze the stability of performance across several key features: gate fidelities, de-coherence time, SPAM error, and cross-talk error. We bound the behavior of these metrics derived from their joint probability distribution, and we validate these bounds using numerical simulations of the Bernstein-Vazirani circuit tested on a superconducting transmon device. Our results enable the rigorous testing of reliability in NISQ devices and support the long-term goals of stable quantum computing.

21.Analyzing quantum machine learning using tensor network

Authors:S. Shin, Y. S. Teo, H. Jeong

Abstract: Variational quantum machine learning (VQML), which employs variational quantum circuits as computational models for machine learning, is considered one of the most promising applications for near-term quantum devices. We represent a VQML model as a tensor network (TN) and analyze it in the context of the TN. We identify the model as a featured linear model (FLM) with a constrained coefficient where the feature map is given by the tensor products. This allows us to create the same feature map classically in an efficient way using only the same amount of pre-processing as VQML, resulting in a classical TN machine learning model that exists within the function space spanned by the same basis functions as VQML models. By representing the coefficient components of the models using matrix product states (MPS), we analyze the coefficients of the VQML model and determine the conditions for efficient approximation of VQML models by classical models. Finally, we compare the performance of the VQML and classical models in function regression tasks using kernel and variational methods, highlighting the distinct characteristics between them. Our work presents a consolidated approach to comparing classical and quantum machine learning models within the unified framework of tensor network.

22.Mapping a 50-spin-qubit network through correlated sensing

Authors:G. L. van de Stolpe, D. P. Kwiatkowski, C. E. Bradley, J. Randall, S. A. Breitweiser, L. C. Bassett, M. Markham, D. J. Twitchen, T. H. Taminiau

Abstract: Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding a single electron-spin defect. However, the accessible size and complexity of these spin networks has been constrained by the spectral resolution of current methods. Here, we map a network of 50 coupled spins through high-resolution correlated sensing schemes, using a single nitrogen-vacancy center in diamond. We develop concatenated double-resonance sequences that identify spin-chains through the network. These chains reveal the characteristic spin frequencies and their interconnections with high spectral resolution, and can be fused together to map out the network. Our results provide new opportunities for quantum simulations by increasing the number of available spin qubits. Additionally, our methods might find applications in nano-scale imaging of complex spin systems external to the host crystal.

23.Exact solution of an infinite-range, non-collective dissipative transverse-field Ising model

Authors:David Roberts, Aashish A. Clerk

Abstract: The dissipative variant of the Ising model in a transverse field is one of the most important models in the analysis of open quantum many-body systems, due to its paradigmatic character for understanding driven-dissipative quantum phase transitions, as well as its relevance in modelling diverse experimental platforms in atomic physics and quantum simulation. Here, we present an exact solution for the steady state of the transverse-field Ising model in the limit of infinite-range interactions, with local dissipation and inhomogeneous transverse fields. Our solution holds despite the lack of any collective spin symmetry or even permutation symmetry. It allows us to investigate first- and second-order dissipative phase transitions, driven-dissipative criticality, and captures the emergence of a surprising ``spin blockade" phenomenon. The ability of the solution to describe spatially-varying local fields provides a new tool to study disordered open quantum systems in regimes that would be extremely difficult to treat with numerical methods.