arXiv daily

Quantum Physics (quant-ph)

Fri, 21 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Two-stage, low noise quantum frequency conversion of single photons from silicon-vacancy centers in diamond to the telecom C-band

Authors:Marlon Schäfer, Benjamin Kambs, Dennis Herrmann, Tobias Bauer, Christoph Becher

Abstract: The silicon-vacancy center in diamond holds great promise as a qubit for quantum communication networks. However, since the optical transitions are located within the visible red spectral region, quantum frequency conversion to low-loss telecommunication wavelengths becomes a necessity for its use in long-range, fiber-linked networks. This work presents a highly efficient, low-noise quantum frequency conversion device for photons emitted by a silicon-vacancy (SiV) center in diamond to the telecom C-band. By using a two-stage difference-frequency mixing scheme SPDC noise is circumvented and Raman noise is minimized, resulting in a very low noise rate of $10.4 \pm 0.7$ photons per second as well as an overall device efficiency of $35.6\, \%$. By converting single photons from SiV centers we demonstrate the preservation of photon statistics upon conversion.

2.A Generalized Quantum Branching Program

Authors:Debajyoti Bera, Tharrmashastha Sapv

Abstract: Classical branching programs are studied to understand the space complexity of computational problems. Prior to this work, Nakanishi and Ablayev had separately defined two different quantum versions of branching programs that we refer to as NQBP and AQBP. However, none of them, to our satisfaction, captures the intuitive idea of being able to query different variables in superposition in one step of a branching program traversal. Here we propose a quantum branching program model, referred to as GQBP, with that ability. To motivate our definition, we explicitly give examples of GQBP for n-bit Deutsch-Jozsa, n-bit Parity, and 3-bit Majority with optimal lengths. We the show several equivalences, namely, between GQBP and AQBP, GQBP and NQBP, and GQBP and query complexities (using either oracle gates and a QRAM to query input bits). In way this unifies the different results that we have for the two earlier branching programs, and also connects them to query complexity. We hope that GQBP can be used to prove space and space-time lower bounds for quantum solutions to combinatorial problems.

3.Uncomputation in the Qrisp high-level Quantum Programming Framework

Authors:Raphael Seidel, Nikolay Tcholtchev, Sebastian Bock, Manfred Hauswirth

Abstract: Uncomputation is an essential part of reversible computing and plays a vital role in quantum computing. Using this technique, memory resources can be safely deallocated without performing a nonreversible deletion process. For the case of quantum computing, several algorithms depend on this as they require disentangled states in the course of their execution. Thus, uncomputation is not only about resource management, but is also required from an algorithmic point of view. However, synthesizing uncomputation circuits is tedious and can be automated. In this paper, we describe the interface for automated generation of uncomputation circuits in our Qrisp framework. Our algorithm for synthesizing uncomputation circuits in Qrisp is based on an improved version of "Unqomp", a solution presented by Paradis et. al. Our paper also presents some improvements to the original algorithm, in order to make it suitable for the needs of a high-level programming framework. Qrisp itself is a fully compilable, high-level programming language/framework for gate-based quantum computers, which abstracts from many of the underlying hardware details. Qrisp's goal is to support a high-level programming paradigm as known from classical software development.

4.No-go theorems for photon state transformations in quantum linear optics

Authors:Pablo V. Parellada, Vicent Gimeno i Garcia, Julio-José Moyano-Fernández, Juan Carlos Garcia-Escartin

Abstract: We give a necessary condition for photon state transformations in linear optical setups preserving the total number of photons. From an analysis of the algebra describing the quantum evolution, we find a conserved quantity that appears in all allowed optical transformations. We comment some examples and numerical applications, with example code, and give three general no-go results. These include (i) the impossibility of deterministic transformations which redistribute the photons from one to two different modes, (ii) a proof that it is impossible to generate a perfect Bell state in heralded schemes with a separable input for any number of ancillary photons and modes and a fixed herald and (iii) a restriction for the conversion between different types of entanglement (converting GHZ to W states).

5.Certification of randomness without seed randomness

Authors:Shubhayan Sarkar

Abstract: The security of any cryptographic scheme relies on access to random number generators. Device-independently certified random number generators provide maximum security as one can discard the presence of an intruder by considering only the statistics generated by these devices. Any of the known device-independent schemes to certify randomness require an initial feed of randomness into the devices, which can be called seed randomness. In this work, we propose a one-sided device-independent scheme to certify two bits of randomness without the initial seed randomness. For our purpose, we utilise the framework of quantum networks with no inputs and two independent sources shared among two parties with one of them being trusted. Along with it, we also certify the maximally entangled state and the Bell basis measurement with the untrusted party which is then used to certify the randomness generated from the untrusted device.

6.Different Flavors of Exact-Factorization-Based Mixed Quantum-Classical Methods for Multistate Dynamics

Authors:Evaristo Villaseco Arribas, Patricia Vindel-Zandbergen, Saswata Roy, Neepa T. Maitra

Abstract: The exact factorization approach has led to the development of new mixed quantum-classical methods for simulating coupled electron-ion dynamics. We compare their performance for dynamics when more than two electronic states are occupied at a given time, and analyze: (1) the use of coupled versus auxiliary trajectories in evaluating the electron-nuclear correlation terms, (2) the approximation of using these terms within surface-hopping and Ehrenfest frameworks, and (3) the relevance of the exact conditions of zero population transfer away from nonadiabatic coupling regions and total energy conservation. Dynamics through the three-state conical intersection in the uracil radical cation as well as polaritonic models in one dimension are studied.

7.Quantum LiDAR with Frequency Modulated Continuous Wave

Authors:Ming-Da Huang, Zhan-Feng Jiang, Hong-Yi Chen, Ying Zuo, Xiao-Peng Hu, Hai-Dong Yuan, Li-Jian Zhang, Qi Qin

Abstract: The range and speed of a moving object can be ascertained using the sensing technique known as light detection and ranging (LiDAR). It has recently been suggested that quantum LiDAR, which uses entangled states of light, can enhance the capabilities of LiDAR. Entangled pulsed light is used in prior quantum LiDAR approaches to assess both range and velocity at the same time using the pulses' time of flight and Doppler shift. The entangled pulsed light generation and detection, which are crucial for pulsed quantum LiDAR, are often inefficient. Here, we study a quantum LiDAR that operates on a frequency-modulated continuous wave (FMCW), as opposed to pulses. We first outline the design of the quantum FMCW LiDAR using entangled frequency-modulated photons in a Mach-Zehnder interferometer, and we demonstrate how it can increase accuracy and resolution for range and velocity measurements by $\sqrt{n}$ and $n$, respectively, with $n$ entangled photons. We also demonstrate that quantum FMCW LiDAR may perform simultaneous measurements of the range and velocity without the need for quantum pulsed compression, which is necessary in pulsed quantum LiDAR. Since the generation of entangled photons is the only inefficient nonlinear optical process needed, the quantum FMCW LiDAR is better suited for practical implementations. Additionally, most measurements in the quantum FMCW LiDAR can be carried out electronically by down-converting optical signal to microwave region.

8.Connecting Quantum Cities: Simulation of a Satellite-Based Quantum Network

Authors:Raja Yehia, Matteo Schiavon, Valentina Marulanda Acosta, Tim Coopmans, Iordanis Kerenidis, David Elkouss, Eleni Diamanti

Abstract: We present and analyse an architecture for a European-scale quantum network using satellite links to connect Quantum Cities, which are metropolitan quantum networks with minimal hardware requirements for the end users. Using NetSquid, a quantum network simulation tool based on discrete events, we assess and benchmark the performance of such a network linking distant locations in Europe in terms of quantum key distribution rates, considering realistic parameters for currently available or near-term technology. Our results highlight the key parameters and the limits of current satellite quantum communication links and can be used to assist the design of future missions. We also discuss the possibility of using high-altitude balloons as an alternative to satellites.

9.Persistent Ballistic Entanglement Spreading with Optimal Control in Quantum Spin Chains

Authors:Ying Lu, Pei Shi, Xiao-Han Wang, Jie Hu, Shi-Ju Ran

Abstract: Entanglement propagation provides a key routine to understand quantum many-body dynamics in and out of equilibrium. In this work, we uncover that the ``variational entanglement-enhancing'' field (VEEF) robustly induces a persistent ballistic spreading of entanglement in quantum spin chains. The VEEF is time dependent, and is optimally controlled to maximize the bipartite entanglement entropy (EE) of the final state. Such a linear growth persists till the EE reaches the genuine saturation $\tilde{S} = - \log_{2} 2^{-\frac{N}{2}}=\frac{N}{2}$ with $N$ the total number of spins. The EE satisfies $S(t) = v t$ for the time $t \leq \frac{N}{2v}$, with $v$ the velocity. These results are in sharp contrast with the behaviors without VEEF, where the EE generally approaches a sub-saturation known as the Page value $\tilde{S}_{P} =\tilde{S} - \frac{1}{2\ln{2}}$ in the long-time limit, and the entanglement growth deviates from being linear before the Page value is reached. The dependence between the velocity and interactions is explored, with $v \simeq 2.76$, $4.98$, and $5.75$ for the spin chains with Ising, XY, and Heisenberg interactions, respectively. We further show that the nonlinear growth of EE emerges with the presence of long-range interactions.

10.The Schmidt rank for the commuting operator framework

Authors:Lauritz van Luijk, René Schwonnek, Alexander Stottmeister, Reinhard F. Werner

Abstract: In quantum information theory, the Schmidt rank is a fundamental measure for the entanglement dimension of a pure bipartite state. Its natural definition uses the Schmidt decomposition of vectors on bipartite Hilbert spaces, which does not exist (or at least is not canonically given) if the observable algebras of the local systems are allowed to be general C*-algebras. In this work, we generalize the Schmidt rank to the commuting operator framework where the joint system is not necessarily described by the minimal tensor product but by a general bipartite algebra. We give algebraic and operational definitions for the Schmidt rank and show their equivalence. We analyze bipartite states and compute the Schmidt rank in several examples: The vacuum in quantum field theory, Araki-Woods-Powers states, as well as ground states and translation invariant states on spin chains which are viewed as bipartite systems for the left and right half chains. We conclude with a list of open problems for the commuting operator framework.

11.$N$ Scaling of Large-Sample Collective Decay in Inhomogeneous Ensembles

Authors:Sergiy Stryzhenko, Alexander Bruns, Thorsten Peters

Abstract: Superradiance and -fluorescence are phenomena where $N$ identical emitters coupled to each other synchronize and decay collectively $N$ times faster than independent emitters would. This is accompanied by an intense burst whose peak photon rate is $\propto N^2$ for homogeneous excitation conditions. For inhomogeneous excitation, however, collective decay either cannot build up or its scaling breaks down, as different parts of the ensemble do not emit in sync. We here report on an experimental study of superfluorescence for a disordered ensemble of atoms coupled to a hollow-core fiber. The emitted radiation exhibits strong bursts, including a ringing. We demonstrate a decay rate enhanced by two orders of magnitude, despite intrinsic radial and longitudinal inhomogeneities. By devising a simple model, taking inhomogeneous broadening and light attenuation into account, we determine an effective number of collective emitters. We show that this recovers the $N$ scaling known to homogeneous ensembles over a large range of parameters, as long as dispersion is negligible. Our results provide a simple physical understanding of the effects inhomogeneous conditions have on enhanced collective decay. This is relevant to optimize collective effects in extended ensembles as typically used in quantum optics, precision time-keeping or waveguide QED.

12.Grain size in low loss superconducting Ta thin films on c-axis sapphire

Authors:Sarah Garcia Jones, Nicholas Materise, Ka Wun Leung, Brian D. Isakov, Xi Chen, Jiangchang Zheng, Andras Gyenis, Berthold Jaeck, Corey Rae H. McRae

Abstract: In recent years, the implementation of thin-film Ta has led to improved coherence times in superconducting circuits. Efforts to further optimize this materials set have become a focus of the subfield of materials for superconducting quantum computing. It has been previously hypothesized that grain size could be correlated with device performance. In this work, we perform a comparative grain size experiment with $\alpha$-Ta on $c$-axis sapphire. Our evaluation methods include both room-temperature chemical and structural characterization and cryogenic microwave measurements, and we report no statistical difference in device performance between small- and larger-grain-size devices with grain sizes of 924 nm$^2$ and 1700 nm$^2$, respectively. These findings suggest that grain size is not correlated with loss in the parameter regime of interest for Ta grown on c-axis sapphire, narrowing the parameter space for optimization of this materials set.

13.Entanglement of weighted graphs uncovers transitions in variable-range interacting models

Authors:Debkanta Ghosh, Keshav Das Agarwal, Pritam Halder, Aditi Sen De

Abstract: The cluster state acquired by evolving the nearest-neighbor (NN) Ising model from a completely separable state is the resource for measurement-based quantum computation. Instead of an NN system, a variable-range power law interacting Ising model can generate a genuine multipartite entangled (GME) weighted graph state (WGS) that may reveal intrinsic characteristics of the evolving Hamiltonian. We establish that the pattern of generalized geometric measure (GGM) in the evolved state with an arbitrary number of qubits is sensitive to fall-off rates and the range of interactions of the evolving Hamiltonian. We report that the time-derivative and time-averaged GGM at a particular time can detect the transition points present in the fall-off rates of the interaction strength, separating different regions, namely long-range, quasi-local and local ones in one- and two-dimensional lattices with deformation. Moreover, we illustrate that in the quasi-local and local regimes, there exists a minimum coordination number in the evolving Ising model for a fixed total number of qubits which can mimic the GGM of the long-range model. In order to achieve a finite-size subsystem from the entire system, we design a local measurement strategy that allows a WGS of an arbitrary number of qubits to be reduced to a local unitarily equivalent WGS having fewer qubits with modified weights.

14.Scalable tensor-network error mitigation for near-term quantum computing

Authors:Sergei Filippov, Matea Leahy, Matteo A. C. Rossi, Guillermo García-Pérez

Abstract: Before fault-tolerance becomes implementable at scale, quantum computing will heavily rely on noise mitigation techniques. While methods such as zero noise extrapolation with probabilistic error amplification (ZNE-PEA) and probabilistic error cancellation (PEC) have been successfully tested on hardware recently, their scalability to larger circuits may be limited. Here, we introduce the tensor-network error mitigation (TEM) algorithm, which acts in post-processing to correct the noise-induced errors in estimations of physical observables. The method consists of the construction of a tensor network representing the inverse of the global noise channel affecting the state of the quantum processor, and the consequent application of the map to informationally complete measurement outcomes obtained from the noisy state. TEM does therefore not require additional quantum operations other than the implementation of informationally complete POVMs, which can be achieved through randomised local measurements. The key advantage of TEM is that the measurement overhead is quadratically smaller than in PEC. We test TEM extensively in numerical simulations in different regimes. We find that TEM can be used in circuits twice as deep as PEC in realistic conditions with the sparse Pauli-Lindblad noise, such as those in E. van den Berg et al., Nat. Phys. (2023). By using Clifford circuits, we explore the capabilities of the method in wider and deeper circuits with lower noise levels. We find that in the case of 100 qubits and depth 100, both PEC and ZNE fail to produce accurate results by using $\sim 10^5$ shots, while TEM does.