arXiv daily

Quantum Physics (quant-ph)

Tue, 27 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Sensing RF fields with a distant stand-alone Rydberg-atomic receiver

Authors:J. S. Otto, M. Chilcott, A. B. Deb, N. Kjærgaard

Abstract: We combine a rubidium vapour cell with a corner-cube prism reflector to form a passive RF receiver, allowing the detection of microwave signals at a location distant from the active components required for atomic sensing. This compact receiver has no electrical components and is optically linked to the active base station by a pair of free-space laser beams that establish an electromagnetically induced transparency scenario in the atomic vapour. Microwave signals at the receiver location are imprinted onto an optical signal which is detected at the base station. Our stand-alone receiver architecture adds important flexibility to Rydberg-atom based sensing technologies, which are currently subject to significant attention. We demonstrate a ~20 m link with no particular effort and foresee significant future prospects of achieving a much larger separation between receiver and base station.

2.Geometrical optimization of spin clusters for the preservation of quantum coherence

Authors:Lea Gassab, Onur Pusuluk, Özgür E. Müstecaplıoğlu

Abstract: We investigate the influence of geometry on the preservation of quantum coherence in spin clusters subjected to a thermal environment. Assuming weak inter-spin coupling, we explore the various buffer network configurations that can be embedded in a plane. Our findings reveal that the connectivity of the buffer network is crucial in determining the preservation duration of quantum coherence in an individual central spin. Specifically, we observe that the maximal planar graph yields the longest preservation time for a given number of buffer spins. Interestingly, our results demonstrate that the preservation time does not consistently increase with an increasing number of buffer spins. Employing a quantum master equation in our simulations, we further demonstrate that a tetrahedral geometry comprising a four-spin buffer network provides optimal protection against environmental effects.

3.Quantum sensing of phase-covariant optical channels

Authors:Ranjith Nair, Mile Gu

Abstract: We obtain universal (i.e., probe and measurement-independent) performance bounds on ancilla-assisted quantum sensing of multiple parameters of phase-covariant optical channels under energy and mode-number constraints. We first show that for any such constrained problem, an optimal ancilla-entangled probe can always be found whose reduced state on the modes probing the channel is diagonal in the photon-number basis. For parameters that are encoded in single-mode Gaussian channels, we derive a universal upper bound on the quantum Fisher information matrix that delineates the roles played by the energy and mode constraints. We illustrate our results for sensing of the transmittance of a thermal loss channel under both the no-passive-signature and passive-signature paradigms, and in the problem of sensing the noise variance of an additive-noise channel. In both cases, we show that two-mode squeezed vacuum probes are near-optimal under the constraints in the regime of low signal brightness, i.e., per-mode average photon number. More generally, our work sets down a uniform framework for readily evaluating universal limits for any sensing problem involving Gaussian channels.

4.Microwave characterization of tantalum superconducting resonators on silicon substrate with niobium buffer layer

Authors:Yoshiro Urade, Kay Yakushiji, Manabu Tsujimoto, Takahiro Yamada, Kazumasa Makise, Wataru Mizubayashi, Kunihiro Inomata

Abstract: Tantalum thin films sputtered on unheated silicon substrates are characterized with microwaves at around 10 GHz in a 10 mK environment. We show that the phase of tantalum with a body-centered cubic lattice ($\alpha$-Ta) can be grown selectively by depositing a niobium buffer layer prior to a tantalum film. The physical properties of the films, such as superconducting transition temperature and crystallinity, change markedly with the addition of the buffer layer. Coplanar waveguide resonators based on the composite film exhibit significantly enhanced internal quality factors compared with a film without the buffer layer. The internal quality factor approaches $2\times 10^7$ at a large-photon-number limit. While the quality factor decreases at the single-photon level owing to two-level system (TLS) loss, we have identified the primary cause of TLS loss to be the amorphous silicon layer at the film-substrate interface, which originates from the substrate cleaning before the film deposition rather than the film itself. The temperature dependence of the internal quality factors shows a marked rise below 200 mK, suggesting the presence of TLS-TLS interactions. The present low-loss tantalum films can be deposited without substrate heating and thus have various potential applications in superconducting quantum electronics.

5.Qubit dephasing by spectrally diffusing quantum two-level systems

Authors:Shlomi Matityahu, Alexander Shnirman, Moshe Schechter

Abstract: We investigate the pure dephasing of a Josephson qubit due to the spectral diffusion of two-level systems that are close to resonance with the qubit. We identify the parameter regime in which this pure dephasing rate can be of the order of the energy relaxation rate and, thus, the relation $T_2 = 2T_1$ is violated for the qubit. This regime is reached if the dynamics of the thermal TLSs responsible for the spectral diffusion is sufficiently slower than the energy relaxation of the qubit.

6.Synthesis of Quantum Vector Databases Based on Grovers Algorithm

Authors:Cesar Borisovich Pronin, Andrey Vladimirovich Ostroukh

Abstract: This paper describes a method for using Grovers algorithm to create a quantum vector database, the database stores embeddings based on Controlled-S gates, which represent a binary numerical value. This value represents the embeddings value. The process of creating meaningful embeddings is handled by a classical computer and the search process is handled by the quantum computer. This search approach might be beneficial for a large enough database, or it could be seen as a very qubit-efficient (super dense) way for storing data on a quantum computer, since the proposed circuit stores many embeddings inside one quantum register simultaneously.

7.Quantum Fourier Networks for Solving Parametric PDEs

Authors:Nishant Jain, Jonas Landman, Natansh Mathur, Iordanis Kerenidis

Abstract: Many real-world problems, like modelling environment dynamics, physical processes, time series etc., involve solving Partial Differential Equations (PDEs) parameterised by problem-specific conditions. Recently, a deep learning architecture called Fourier Neural Operator (FNO) proved to be capable of learning solutions of given PDE families for any initial conditions as input. However, it results in a time complexity linear in the number of evaluations of the PDEs while testing. Given the advancements in quantum hardware and the recent results in quantum machine learning methods, we exploit the running efficiency offered by these and propose quantum algorithms inspired by the classical FNO, which result in time complexity logarithmic in the number of evaluations and are, therefore, expected to be substantially faster than their classical counterpart. At their core, we use the unary encoding paradigm and orthogonal quantum layers and introduce a circuit to perform quantum Fourier transform in the unary basis. We propose three different quantum circuits to perform a quantum FNO. The proposals differ in their depth and their similarity to the classical FNO. We also benchmark our proposed algorithms on three PDE families, namely Burgers' equation, Darcy's flow equation and the Navier-Stokes equation. The results show that our quantum methods are comparable in performance to the classical FNO. We also perform an analysis on small-scale image classification tasks where our proposed algorithms are at par with the performance of classical CNNs, proving their applicability to other domains as well.

8.The Relation between Wavefunction and 3D Space Implies Many Worlds with Local Beables and Probabilities

Authors:Ovidiu Cristinel Stoica

Abstract: We show that the quantum wavefunctional can be seen as a set of classical fields on the 3D space aggregated by a measure. We obtain a complete description of the wavefunctional in terms of classical local beables. With this correspondence, classical explanations of the macro level and of probabilities transfer almost directly to the quantum. A key difference is that, in quantum theory, the classical states coexist in parallel, so the probabilities come from self-location uncertainty. We show that these states are distributed according to the Born rule. The coexistence of classical states implies that there are many worlds, even if we assume the collapse postulate. This leads automatically to a new version of the many-worlds interpretation in which the major objections are addressed naturally. We show that background-free quantum gravity provides additional support for this proposal and suggests why branching happens toward the future.

9.On Studies of Entropy of Classical and Quantum Kac Rings

Authors:Niamat Gill, Nishchal Dwivedi

Abstract: Statistical physics is important in understanding the physics of interacting many bodies. This has been historically developed by attempts to understand colliding gases and quantifying quantities like entropy, free energy, and other thermodynamic quantities. An important contribution in statistical physics was by Boltzmann in the form of the H-theorem, which considered collisions between particles and used the assumption of molecular chaos or Stosszahlansatz to understand macroscopic irreversibility. To elucidate these ideas, Mark Kac introduced a classical analog called Kac rings. In this work, we attempt to introduce quantum-ness in a Kac ring and study its entropy and recurrence, comparing and contrasting to corresponding trends in a classical Kac ring. We look at the trends of recurrence time for a system with a qubit as a pointer. We further study the time distribution of entropy for these systems.

10.A framework of partial error correction for intermediate-scale quantum computers

Authors:Nikolaos Koukoulekidis, Samson Wang, Tom O'Leary, Daniel Bultrini, Lukasz Cincio, Piotr Czarnik

Abstract: As quantum computing hardware steadily increases in qubit count and quality, one important question is how to allocate these resources to mitigate the effects of hardware noise. In a transitional era between noisy small-scale and fully fault-tolerant systems, we envisage a scenario in which we are only able to error correct a small fraction of the qubits required to perform an interesting computation. In this work, we develop concrete constructions of logical operations on a joint system of a collection of noisy and a collection of error-corrected logical qubits. Within this setting and under Pauli noise assumptions, we provide analytical evidence that brick-layered circuits display on average slower concentration to the "useless" uniform distribution with increasing circuit depth compared to fully noisy circuits. We corroborate these findings by numerical demonstration of slower decoherence with an increasing fraction of error-corrected qubits under a noise model inspired by a real device. We find that this advantage only comes when the number of error-corrected qubits passes a specified threshold which depends on the number of couplings between error-corrected and noisy registers.

11.Charge-resolved entanglement in the presence of topological defects

Authors:David X. Horvath, Shachar Fraenkel, Stefano Scopa, Colin Rylands

Abstract: Topological excitations or defects such as solitons are ubiquitous throughout physics, supporting numerous interesting phenomena like zero energy modes with exotic statistics and fractionalized charges. In this paper, we study such objects through the lens of symmetry-resolved entanglement entropy. Specifically, we compute the charge-resolved entanglement entropy for a single interval in the low-lying states of the Su-Schrieffer-Heeger model in the presence of topological defects. Using a combination of exact and asymptotic analytic techniques, backed up by numerical analysis, we find that, compared to the unresolved counterpart and to the pure system, a richer structure of entanglement emerges. This includes a redistribution between its configurational and fluctuational parts due to the presence of the defect and an interesting interplay with entanglement equipartition. In particular, in a subsystem that excludes the defect, equipartition is restricted to charge sectors of the same parity, while full equipartition is restored only if the subsystem includes the defect, as long as the associated zero mode remains unoccupied. Additionally, by exciting zero modes in the presence of multiple defects, we observe a significant enhancement of entanglement in certain charge sectors, due to charge splitting on the defects. These constitute two different scenarios featuring the rare breakdown of entanglement equipartition. We unveil the joint mechanism underlying these two scenarios by relating them to degeneracies in the spectrum of the charge-resolved entanglement Hamiltonian.

12.Enhancing Purity of Single Photons in Parametric Down-Conversion through Simultaneous Pump Beam and Crystal Domain Engineering

Authors:Baghdasar Baghdasaryan, Fabian Steinlechner, Stephan Fritzsche

Abstract: Spontaneous parametric down-conversion (SPDC) has shown great promise in the generation of pure and indistinguishable single photons. Photon pairs produced in bulk crystals are highly correlated in terms of transverse space and frequency. These correlations limit the indistinguishability of photons and result in inefficient photon sources. Domain-engineered crystals with a Gaussian nonlinear response have been explored to minimize spectral correlations. Here, we study the impact of such domain engineering on spatial correlations of generated photons. We show that crystals with a Gaussian nonlinear response reduce the spatial correlations between photons. However, the Gaussian nonlinear response is not sufficient to fully eliminate the spatial correlations. Therefore, the development of a comprehensive method to minimize these correlations remains an open challenge. Our solution to this problem involves simultaneous engineering of the pump beam and crystal. We achieve purity of single-photon state up to 99 \% without any spatial filtering. Our findings provide valuable insights into the spatial waveform generated in structured SPDC crystals, with implications for applications such as Boson Sampling.

13.Enhanced local addressability of a spin array with local exchange pulses and global microwave driving

Authors:Anoosha Fayyaz, Jason Kestner

Abstract: We theoretically propose a strategy to address an individual spin in a large array of spin qubits with a random distribution of g-factors by employing a combination of single-qubit and SWAP gates facilitated by a global microwave field and local exchange pulses. Consequently, only the target qubit undergoes the desired operation and all other qubits return to their original states, even qubits that share the same Larmor frequency as the target. Gate fidelities above 99% can thus be maintained for arrays containing tens of qubits.

14.Machine-learning based noise characterization and correction on neutral atoms NISQ devices

Authors:Ettore Canonici, Stefano Martina, Riccardo Mengoni, Daniele Ottaviani, Filippo Caruso

Abstract: Neutral atoms devices represent a promising technology that uses optical tweezers to geometrically arrange atoms and modulated laser pulses to control the quantum states. A neutral atoms Noisy Intermediate Scale Quantum (NISQ) device is developed by Pasqal with rubidium atoms that will allow to work with up to 100 qubits. All NISQ devices are affected by noise that have an impact on the computations results. Therefore it is important to better understand and characterize the noise sources and possibly to correct them. Here, two approaches are proposed to characterize and correct noise parameters on neutral atoms NISQ devices. In particular the focus is on Pasqal devices and Machine Learning (ML) techniques are adopted to pursue those objectives. To characterize the noise parameters, several ML models are trained, using as input only the measurements of the final quantum state of the atoms, to predict laser intensity fluctuation and waist, temperature and false positive and negative measurement rate. Moreover, an analysis is provided with the scaling on the number of atoms in the system and on the number of measurements used as input. Also, we compare on real data the values predicted with ML with the a priori estimated parameters. Finally, a Reinforcement Learning (RL) framework is employed to design a pulse in order to correct the effect of the noise in the measurements. It is expected that the analysis performed in this work will be useful for a better understanding of the quantum dynamic in neutral atoms devices and for the widespread adoption of this class of NISQ devices.