arXiv daily

Computer Vision and Pattern Recognition (cs.CV)

Tue, 09 May 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.SRIL: Selective Regularization for Class-Incremental Learning

Authors:Jisu Han, Jaemin Na, Wonjun Hwang

Abstract: Human intelligence gradually accepts new information and accumulates knowledge throughout the lifespan. However, deep learning models suffer from a catastrophic forgetting phenomenon, where they forget previous knowledge when acquiring new information. Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge. In this paper, we propose a selective regularization method that accepts new knowledge while maintaining previous knowledge. We first introduce an asymmetric feature distillation method for old and new classes inspired by cognitive science, using the gradient of classification and knowledge distillation losses to determine whether to perform pattern completion or pattern separation. We also propose a method to selectively interpolate the weight of the previous model for a balance between stability and plasticity, and we adjust whether to transfer through model confidence to ensure the performance of the previous class and enable exploratory learning. We validate the effectiveness of the proposed method, which surpasses the performance of existing methods through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.

2.Hybrid Transformer and CNN Attention Network for Stereo Image Super-resolution

Authors:Ming Cheng, Haoyu Ma, Qiufang Ma, Xiaopeng Sun, Weiqi Li, Zhenyu Zhang, Xuhan Sheng, Shijie Zhao, Junlin Li, Li Zhang

Abstract: Multi-stage strategies are frequently employed in image restoration tasks. While transformer-based methods have exhibited high efficiency in single-image super-resolution tasks, they have not yet shown significant advantages over CNN-based methods in stereo super-resolution tasks. This can be attributed to two key factors: first, current single-image super-resolution transformers are unable to leverage the complementary stereo information during the process; second, the performance of transformers is typically reliant on sufficient data, which is absent in common stereo-image super-resolution algorithms. To address these issues, we propose a Hybrid Transformer and CNN Attention Network (HTCAN), which utilizes a transformer-based network for single-image enhancement and a CNN-based network for stereo information fusion. Furthermore, we employ a multi-patch training strategy and larger window sizes to activate more input pixels for super-resolution. We also revisit other advanced techniques, such as data augmentation, data ensemble, and model ensemble to reduce overfitting and data bias. Finally, our approach achieved a score of 23.90dB and emerged as the winner in Track 1 of the NTIRE 2023 Stereo Image Super-Resolution Challenge.

3.LSAS: Lightweight Sub-attention Strategy for Alleviating Attention Bias Problem

Authors:Shanshan Zhong, Wushao Wen, Jinghui Qin, Qiangpu Chen, Zhongzhan Huang

Abstract: In computer vision, the performance of deep neural networks (DNNs) is highly related to the feature extraction ability, i.e., the ability to recognize and focus on key pixel regions in an image. However, in this paper, we quantitatively and statistically illustrate that DNNs have a serious attention bias problem on many samples from some popular datasets: (1) Position bias: DNNs fully focus on label-independent regions; (2) Range bias: The focused regions from DNN are not completely contained in the ideal region. Moreover, we find that the existing self-attention modules can alleviate these biases to a certain extent, but the biases are still non-negligible. To further mitigate them, we propose a lightweight sub-attention strategy (LSAS), which utilizes high-order sub-attention modules to improve the original self-attention modules. The effectiveness of LSAS is demonstrated by extensive experiments on widely-used benchmark datasets and popular attention networks. We release our code to help other researchers to reproduce the results of LSAS~\footnote{https://github.com/Qrange-group/LSAS}.

4.Boosting Visual-Language Models by Exploiting Hard Samples

Authors:Haonan Wang, Minbin Huang, Runhui Huang, Lanqing Hong, Hang Xu, Tianyang Hu, Xiaodan Liang, Zhenguo Li

Abstract: Large vision and language models, such as Contrastive Language-Image Pre-training (CLIP), are rapidly becoming the industry norm for matching images and texts. In order to improve its zero-shot recognition performance, current research either adds additional web-crawled image-text pairs or designs new training losses. However, the additional costs associated with training from scratch and data collection substantially hinder their deployment. In this paper, we present HELIP, a low-cost strategy for boosting the performance of well-trained CLIP models by finetuning them with hard samples over original training data. Mixing hard examples into each batch, the well-trained CLIP model is then fine-tuned using the conventional contrastive alignment objective and a margin loss to distinguish between normal and hard negative data. HELIP is deployed in a plug-and-play fashion to existing models. On a comprehensive zero-shot and retrieval benchmark, without training the model from scratch or utilizing additional data, HELIP consistently boosts existing models to achieve leading performance. In particular, HELIP boosts ImageNet zero-shot accuracy of SLIP by 3.05 and 4.47 when pretrained on CC3M and CC12M respectively. In addition, a systematic evaluation of zero-shot and linear probing experiments across fine-grained classification datasets demonstrates a consistent performance improvement and validates the efficacy of HELIP . When pretraining on CC3M, HELIP boosts zero-shot performance of CLIP and SLIP by 8.4\% and 18.6\% on average respectively, and linear probe performance by 9.5\% and 3.0\% on average respectively.

5.Novel Synthetic Data Tool for Data-Driven Cardboard Box Localization

Authors:Lukáš Gajdošech, Peter Kravár

Abstract: Application of neural networks in industrial settings, such as automated factories with bin-picking solutions requires costly production of large labeled data-sets. This paper presents an automatic data generation tool with a procedural model of a cardboard box. We briefly demonstrate the capabilities of the system, its various parameters and empirically prove the usefulness of the generated synthetic data by training a simple neural network. We make sample synthetic data generated by the tool publicly available.

6.FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration

Authors:Xin Shen, Kyungdon Joo, Jean Oh

Abstract: We propose an end-to-end deep learning approach to rectify fisheye images and simultaneously calibrate camera intrinsic and distortion parameters. Our method consists of two parts: a Quick Image Rectification Module developed with a Pix2Pix GAN and Wasserstein GAN (W-Pix2PixGAN), and a Calibration Module with a CNN architecture. Our Quick Rectification Network performs robust rectification with good resolution, making it suitable for constant calibration in camera-based surveillance equipment. To achieve high-quality calibration, we use the straightened output from the Quick Rectification Module as a guidance-like semantic feature map for the Calibration Module to learn the geometric relationship between the straightened feature and the distorted feature. We train and validate our method with a large synthesized dataset labeled with well-simulated parameters applied to a perspective image dataset. Our solution has achieved robust performance in high-resolution with a significant PSNR value of 22.343.

7.Semantic Embedded Deep Neural Network: A Generic Approach to Boost Multi-Label Image Classification Performance

Authors:Xin Shen, Xiaonan Zhao, Rui Luo

Abstract: Fine-grained multi-label classification models have broad applications in Amazon production features, such as visual based label predictions ranging from fashion attribute detection to brand recognition. One challenge to achieve satisfactory performance for those classification tasks in real world is the wild visual background signal that contains irrelevant pixels which confuses model to focus onto the region of interest and make prediction upon the specific region. In this paper, we introduce a generic semantic-embedding deep neural network to apply the spatial awareness semantic feature incorporating a channel-wise attention based model to leverage the localization guidance to boost model performance for multi-label prediction. We observed an Avg.relative improvement of 15.27% in terms of AUC score across all labels compared to the baseline approach. Core experiment and ablation studies involve multi-label fashion attribute classification performed on Instagram fashion apparels' image. We compared the model performances among our approach, baseline approach, and 3 alternative approaches to leverage semantic features. Results show favorable performance for our approach.

8.DynamicKD: An Effective Knowledge Distillation via Dynamic Entropy Correction-Based Distillation for Gap Optimizing

Authors:Songling Zhu, Ronghua Shang, Bo Yuan, Weitong Zhang, Yangyang Li, Licheng Jiao

Abstract: The knowledge distillation uses a high-performance teacher network to guide the student network. However, the performance gap between the teacher and student networks can affect the student's training. This paper proposes a novel knowledge distillation algorithm based on dynamic entropy correction to reduce the gap by adjusting the student instead of the teacher. Firstly, the effect of changing the output entropy (short for output information entropy) in the student on the distillation loss is analyzed in theory. This paper shows that correcting the output entropy can reduce the gap. Then, a knowledge distillation algorithm based on dynamic entropy correction is created, which can correct the output entropy in real-time with an entropy controller updated dynamically by the distillation loss. The proposed algorithm is validated on the CIFAR100 and ImageNet. The comparison with various state-of-the-art distillation algorithms shows impressive results, especially in the experiment on the CIFAR100 regarding teacher-student pair resnet32x4-resnet8x4. The proposed algorithm raises 2.64 points over the traditional distillation algorithm and 0.87 points over the state-of-the-art algorithm CRD in classification accuracy, demonstrating its effectiveness and efficiency.

9.Patch-DrosoNet: Classifying Image Partitions With Fly-Inspired Models For Lightweight Visual Place Recognition

Authors:Bruno Arcanjo, Bruno Ferrarini, Michael Milford, Klaus D. McDonald-Maier, Shoaib Ehsan

Abstract: Visual place recognition (VPR) enables autonomous systems to localize themselves within an environment using image information. While Convolution Neural Networks (CNNs) currently dominate state-of-the-art VPR performance, their high computational requirements make them unsuitable for platforms with budget or size constraints. This has spurred the development of lightweight algorithms, such as DrosoNet, which employs a voting system based on multiple bio-inspired units. In this paper, we present a novel training approach for DrosoNet, wherein separate models are trained on distinct regions of a reference image, allowing them to specialize in the visual features of that specific section. Additionally, we introduce a convolutional-like prediction method, in which each DrosoNet unit generates a set of place predictions for each portion of the query image. These predictions are then combined using the previously introduced voting system. Our approach significantly improves upon the VPR performance of previous work while maintaining an extremely compact and lightweight algorithm, making it suitable for resource-constrained platforms.

10.Guided Focal Stack Refinement Network for Light Field Salient Object Detection

Authors:Bo Yuan, Yao Jiang, Keren Fu, Qijun Zhao

Abstract: Light field salient object detection (SOD) is an emerging research direction attributed to the richness of light field data. However, most existing methods lack effective handling of focal stacks, therefore making the latter involved in a lot of interfering information and degrade the performance of SOD. To address this limitation, we propose to utilize multi-modal features to refine focal stacks in a guided manner, resulting in a novel guided focal stack refinement network called GFRNet. To this end, we propose a guided refinement and fusion module (GRFM) to refine focal stacks and aggregate multi-modal features. In GRFM, all-in-focus (AiF) and depth modalities are utilized to refine focal stacks separately, leading to two novel sub-modules for different modalities, namely AiF-based refinement module (ARM) and depth-based refinement module (DRM). Such refinement modules enhance structural and positional information of salient objects in focal stacks, and are able to improve SOD accuracy. Experimental results on four benchmark datasets demonstrate the superiority of our GFRNet model against 12 state-of-the-art models.

11.Rotation Synchronization via Deep Matrix Factorization

Authors:Gk Tejus, Giacomo Zara, Paolo Rota, Andrea Fusiello, Elisa Ricci, Federica Arrigoni

Abstract: In this paper we address the rotation synchronization problem, where the objective is to recover absolute rotations starting from pairwise ones, where the unknowns and the measures are represented as nodes and edges of a graph, respectively. This problem is an essential task for structure from motion and simultaneous localization and mapping. We focus on the formulation of synchronization via neural networks, which has only recently begun to be explored in the literature. Inspired by deep matrix completion, we express rotation synchronization in terms of matrix factorization with a deep neural network. Our formulation exhibits implicit regularization properties and, more importantly, is unsupervised, whereas previous deep approaches are supervised. Our experiments show that we achieve comparable accuracy to the closest competitors in most scenes, while working under weaker assumptions.

12.DietCNN: Multiplication-free Inference for Quantized CNNs

Authors:Swarnava Dey, Pallab Dasgupta, Partha P Chakrabarti

Abstract: The rising demand for networked embedded systems with machine intelligence has been a catalyst for sustained attempts by the research community to implement Convolutional Neural Networks (CNN) based inferencing on embedded resource-limited devices. Redesigning a CNN by removing costly multiplication operations has already shown promising results in terms of reducing inference energy usage. This paper proposes a new method for replacing multiplications in a CNN by table look-ups. Unlike existing methods that completely modify the CNN operations, the proposed methodology preserves the semantics of the major CNN operations. Conforming to the existing mechanism of the CNN layer operations ensures that the reliability of a standard CNN is preserved. It is shown that the proposed multiplication-free CNN, based on a single activation codebook, can achieve 4.7x, 5.6x, and 3.5x reduction in energy per inference in an FPGA implementation of MNIST-LeNet-5, CIFAR10-VGG-11, and Tiny ImageNet-ResNet-18 respectively. Our results show that the DietCNN approach significantly improves the resource consumption and latency of deep inference for smaller models, often used in embedded systems. Our code is available at: https://github.com/swadeykgp/DietCNN

13.Fooling State-of-the-Art Deepfake Detection with High-Quality Deepfakes

Authors:Arian Beckmann, Anna Hilsmann, Peter Eisert

Abstract: Due to the rising threat of deepfakes to security and privacy, it is most important to develop robust and reliable detectors. In this paper, we examine the need for high-quality samples in the training datasets of such detectors. Accordingly, we show that deepfake detectors proven to generalize well on multiple research datasets still struggle in real-world scenarios with well-crafted fakes. First, we propose a novel autoencoder for face swapping alongside an advanced face blending technique, which we utilize to generate 90 high-quality deepfakes. Second, we feed those fakes to a state-of-the-art detector, causing its performance to decrease drastically. Moreover, we fine-tune the detector on our fakes and demonstrate that they contain useful clues for the detection of manipulations. Overall, our results provide insights into the generalization of deepfake detectors and suggest that their training datasets should be complemented by high-quality fakes since training on mere research data is insufficient.

14.Mediapipe and CNNs for Real-Time ASL Gesture Recognition

Authors:Rupesh Kumar Galgotias college of Engineering and Technology, Ashutosh Bajpai Galgotias college of Engineering and Technology, Ayush Sinha Galgotias college of Engineering and Technology

Abstract: This research paper describes a realtime system for identifying American Sign Language (ASL) movements that employs modern computer vision and machine learning approaches. The suggested method makes use of the Mediapipe library for feature extraction and a Convolutional Neural Network (CNN) for ASL gesture classification. The testing results show that the suggested system can detect all ASL alphabets with an accuracy of 99.95%, indicating its potential for use in communication devices for people with hearing impairments. The proposed approach can also be applied to additional sign languages with similar hand motions, potentially increasing the quality of life for people with hearing loss. Overall, the study demonstrates the effectiveness of using Mediapipe and CNN for real-time sign language recognition, making a significant contribution to the field of computer vision and machine learning.

15.Eiffel Tower: A Deep-Sea Underwater Dataset for Long-Term Visual Localization

Authors:Clémentin Boittiaux IFREMER, COSMER, DYNI, Claire Dune COSMER, Maxime Ferrera IFREMER, Aurélien Arnaubec IFREMER, Ricard Marxer DYNI, Marjolaine Matabos BEEP, Loïc Van Audenhaege BEEP, Vincent Hugel COSMER

Abstract: Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of five years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at https://www.seanoe.org/data/00810/92226/.

16.CAMIL: Context-Aware Multiple Instance Learning for Whole Slide Image Classification

Authors:Olga Fourkioti, Avi Arampatzis, Chen Jin, Mat De Vries, Chris Bakal

Abstract: Cancer diagnoses typically involve human pathologists examining whole slide images (WSIs) of tissue section biopsies to identify tumor cells and their subtypes. However, artificial intelligence (AI)-based models, particularly weakly supervised approaches, have recently emerged as viable alternatives. Weakly supervised approaches often use image subsections or tiles as input, with the overall classification of the WSI based on attention scores assigned to each tile. However, this method overlooks the potential for false positives/negatives because tumors can be heterogeneous, with cancer and normal cells growing in patterns larger than a single tile. Such errors at the tile level could lead to misclassification at the tumor level. To address this limitation, we developed a novel deep learning pooling operator called CHARM (Contrastive Histopathology Attention Resolved Models). CHARM leverages the dependencies among single tiles within a WSI and imposes contextual constraints as prior knowledge to multiple instance learning models. We tested CHARM on the subtyping of non-small cell lung cancer (NSLC) and lymph node (LN) metastasis, and the results demonstrated its superiority over other state-of-the-art weakly supervised classification algorithms. Furthermore, CHARM facilitates interpretability by visualizing regions of attention.

17.Application of Artificial Intelligence in the Classification of Microscopical Starch Images for Drug Formulation

Authors:Marvellous Ajala, Blessing Oko, David Oba-Fidelis, Joycelyn Iyasele, Joy I. Odimegwu

Abstract: Starches are important energy sources found in plants with many uses in the pharmaceutical industry such as binders, disintegrants, bulking agents in drugs and thus require very careful physicochemical analysis for proper identification and verification which includes microscopy. In this work, we applied artificial intelligence techniques (using transfer learning and deep convolution neural network CNNs to microscopical images obtained from 9 starch samples of different botanical sources. Our approach obtained an accuracy of 61% when the machine learning model was pretrained on microscopic images from MicroNet dataset. However the accuracy jumped to 81% for model pretrained on random day to day images obtained from Imagenet dataset. The model pretrained on the imagenet dataset also showed a better precision, recall and f1 score than that pretrained on the imagenet dataset.

18.TPS++: Attention-Enhanced Thin-Plate Spline for Scene Text Recognition

Authors:Tianlun Zheng, Zhineng Chen, Jinfeng Bai, Hongtao Xie, Yu-Gang Jiang

Abstract: Text irregularities pose significant challenges to scene text recognizers. Thin-Plate Spline (TPS)-based rectification is widely regarded as an effective means to deal with them. Currently, the calculation of TPS transformation parameters purely depends on the quality of regressed text borders. It ignores the text content and often leads to unsatisfactory rectified results for severely distorted text. In this work, we introduce TPS++, an attention-enhanced TPS transformation that incorporates the attention mechanism to text rectification for the first time. TPS++ formulates the parameter calculation as a joint process of foreground control point regression and content-based attention score estimation, which is computed by a dedicated designed gated-attention block. TPS++ builds a more flexible content-aware rectifier, generating a natural text correction that is easier to read by the subsequent recognizer. Moreover, TPS++ shares the feature backbone with the recognizer in part and implements the rectification at feature-level rather than image-level, incurring only a small overhead in terms of parameters and inference time. Experiments on public benchmarks show that TPS++ consistently improves the recognition and achieves state-of-the-art accuracy. Meanwhile, it generalizes well on different backbones and recognizers. Code is at https://github.com/simplify23/TPS_PP.

19.GPT-NAS: Neural Architecture Search with the Generative Pre-Trained Model

Authors:Caiyang Yu, Xianggen Liu, Chenwei Tang, Wentao Feng, Jiancheng Lv

Abstract: Neural Architecture Search (NAS) has emerged as one of the effective methods to design the optimal neural network architecture automatically. Although neural architectures have achieved human-level performances in several tasks, few of them are obtained from the NAS method. The main reason is the huge search space of neural architectures, making NAS algorithms inefficient. This work presents a novel architecture search algorithm, called GPT-NAS, that optimizes neural architectures by Generative Pre-Trained (GPT) model. In GPT-NAS, we assume that a generative model pre-trained on a large-scale corpus could learn the fundamental law of building neural architectures. Therefore, GPT-NAS leverages the generative pre-trained (GPT) model to propose reasonable architecture components given the basic one. Such an approach can largely reduce the search space by introducing prior knowledge in the search process. Extensive experimental results show that our GPT-NAS method significantly outperforms seven manually designed neural architectures and thirteen architectures provided by competing NAS methods. In addition, our ablation study indicates that the proposed algorithm improves the performance of finely tuned neural architectures by up to about 12% compared to those without GPT, further demonstrating its effectiveness in searching neural architectures.

20.Learning Dynamic Point Cloud Compression via Hierarchical Inter-frame Block Matching

Authors:Shuting Xia, Tingyu Fan, Yiling Xu, Jenq-Neng Hwang, Zhu Li

Abstract: 3D dynamic point cloud (DPC) compression relies on mining its temporal context, which faces significant challenges due to DPC's sparsity and non-uniform structure. Existing methods are limited in capturing sufficient temporal dependencies. Therefore, this paper proposes a learning-based DPC compression framework via hierarchical block-matching-based inter-prediction module to compensate and compress the DPC geometry in latent space. Specifically, we propose a hierarchical motion estimation and motion compensation (Hie-ME/MC) framework for flexible inter-prediction, which dynamically selects the granularity of optical flow to encapsulate the motion information accurately. To improve the motion estimation efficiency of the proposed inter-prediction module, we further design a KNN-attention block matching (KABM) network that determines the impact of potential corresponding points based on the geometry and feature correlation. Finally, we compress the residual and the multi-scale optical flow with a fully-factorized deep entropy model. The experiment result on the MPEG-specified Owlii Dynamic Human Dynamic Point Cloud (Owlii) dataset shows that our framework outperforms the previous state-of-the-art methods and the MPEG standard V-PCC v18 in inter-frame low-delay mode.

21.Unsupervised Writer Retrieval using NetRVLAD and Graph Similarity Reranking

Authors:Marco Peer, Florian Kleber, Robert Sablatnig

Abstract: This paper presents an unsupervised approach for writer retrieval based on clustering SIFT descriptors detected at keypoint locations resulting in pseudo-cluster labels. With those cluster labels, a residual network followed by our proposed NetRVLAD, an encoding layer with reduced complexity compared to NetVLAD, is trained on 32x32 patches at keypoint locations. Additionally, we suggest a graph-based reranking algorithm called SGR to exploit similarities of the page embeddings to boost the retrieval performance. Our approach is evaluated on two historical datasets (Historical-WI and HisIR19). We include an evaluation of different backbones and NetRVLAD. It competes with related work on historical datasets without using explicit encodings. We set a new State-of-the-art on both datasets by applying our reranking scheme and show that our approach achieves comparable performance on a modern dataset as well.

22.MSVQ: Self-Supervised Learning with Multiple Sample Views and Queues

Authors:Chen Peng, Xianzhong Long, Yun Li

Abstract: Self-supervised methods based on contrastive learning have achieved great success in unsupervised visual representation learning. However, most methods under this framework suffer from the problem of false negative samples. Inspired by mean shift for self-supervised learning, we propose a new simple framework, namely Multiple Sample Views and Queues (MSVQ). We jointly construct a soft label on-the-fly by introducing two complementary and symmetric ways: multiple augmented positive views and two momentum encoders forming various semantic features of negative samples. Two teacher networks perform similarity relationship calculations with negative samples and then transfer this knowledge to the student. Let the student mimic the similar relationship between the samples, thus giving the student a more flexible ability to identify false negative samples in the dataset. The classification results on four benchmark image datasets demonstrate the high effectiveness and efficiency of our approach compared to some classical methods. Source code and pretrained models are available at $\href{https://github.com/pc-cp/MSVQ}{this~http~URL}$.

23.DC3DCD: unsupervised learning for multiclass 3D point cloud change detection

Authors:Iris de Gélis Magellium Institut de Recherche en Informatique et Systèmes Aléatoires IRISA - UMR 6074 - Université Bretagne Sud, Sébastien Lefèvre Institut de Recherche en Informatique et Systèmes Aléatoires IRISA - UMR 6074 - Université Bretagne Sud, Thomas Corpetti Littoral - Environnement - Télédétection - Géomatique LETG - UMR 6554 - Université Rennes 2

Abstract: In a constant evolving world, change detection is of prime importance to keep updated maps. To better sense areas with complex geometry (urban areas in particular), considering 3D data appears to be an interesting alternative to classical 2D images. In this context, 3D point clouds (PCs) obtained by LiDAR or photogrammetry are very interesting. While recent studies showed the considerable benefit of using deep learning-based methods to detect and characterize changes into raw 3D PCs, these studies rely on large annotated training data to obtain accurate results. The collection of these annotations are tricky and time-consuming. The availability of unsupervised or weakly supervised approaches is then of prime interest. In this paper, we propose an unsupervised method, called DeepCluster 3D Change Detection (DC3DCD), to detect and categorize multiclass changes at point level. We classify our approach in the unsupervised family given the fact that we extract in a completely unsupervised way a number of clusters associated with potential changes. Let us precise that in the end of the process, the user has only to assign a label to each of these clusters to derive the final change map. Our method builds upon the DeepCluster approach, originally designed for image classification, to handle complex raw 3D PCs and perform change segmentation task. An assessment of the method on both simulated and real public dataset is provided. The proposed method allows to outperform fully-supervised traditional machine learning algorithm and to be competitive with fully-supervised deep learning networks applied on rasterization of 3D PCs with a mean of IoU over classes of change of 57.06% and 66.69% for the simulated and the real datasets, respectively.

24.High-throughput Cotton Phenotyping Big Data Pipeline Lambda Architecture Computer Vision Deep Neural Networks

Authors:Amanda Issac School of Electrical and Computer Engineering, University of Georgia, Alireza Ebrahimi Department of Mechanical Engineering, Clemson University, Javad Mohammadpour Velni Department of Mechanical Engineering, Clemson University, Glen Rains Department of Entomology, University of Georgia

Abstract: In this study, we propose a big data pipeline for cotton bloom detection using a Lambda architecture, which enables real-time and batch processing of data. Our proposed approach leverages Azure resources such as Data Factory, Event Grids, Rest APIs, and Databricks. This work is the first to develop and demonstrate the implementation of such a pipeline for plant phenotyping through Azure's cloud computing service. The proposed pipeline consists of data preprocessing, object detection using a YOLOv5 neural network model trained through Azure AutoML, and visualization of object detection bounding boxes on output images. The trained model achieves a mean Average Precision (mAP) score of 0.96, demonstrating its high performance for cotton bloom classification. We evaluate our Lambda architecture pipeline using 9000 images yielding an optimized runtime of 34 minutes. The results illustrate the scalability of the proposed pipeline as a solution for deep learning object detection, with the potential for further expansion through additional Azure processing cores. This work advances the scientific research field by providing a new method for cotton bloom detection on a large dataset and demonstrates the potential of utilizing cloud computing resources, specifically Azure, for efficient and accurate big data processing in precision agriculture.

25.StyleSync: High-Fidelity Generalized and Personalized Lip Sync in Style-based Generator

Authors:Jiazhi Guan, Zhanwang Zhang, Hang Zhou, Tianshu Hu, Kaisiyuan Wang, Dongliang He, Haocheng Feng, Jingtuo Liu, Errui Ding, Ziwei Liu, Jingdong Wang

Abstract: Despite recent advances in syncing lip movements with any audio waves, current methods still struggle to balance generation quality and the model's generalization ability. Previous studies either require long-term data for training or produce a similar movement pattern on all subjects with low quality. In this paper, we propose StyleSync, an effective framework that enables high-fidelity lip synchronization. We identify that a style-based generator would sufficiently enable such a charming property on both one-shot and few-shot scenarios. Specifically, we design a mask-guided spatial information encoding module that preserves the details of the given face. The mouth shapes are accurately modified by audio through modulated convolutions. Moreover, our design also enables personalized lip-sync by introducing style space and generator refinement on only limited frames. Thus the identity and talking style of a target person could be accurately preserved. Extensive experiments demonstrate the effectiveness of our method in producing high-fidelity results on a variety of scenes. Resources can be found at https://hangz-nju-cuhk.github.io/projects/StyleSync.

26.Restormer-Plus for Real World Image Deraining: One State-of-the-Art Solution to the GT-RAIN Challenge (CVPR 2023 UG$^2$+ Track 3)

Authors:Chaochao Zheng, Luping Wang, Bin Liu

Abstract: This technical report presents our Restormer-Plus approach, which was submitted to the GT-RAIN Challenge (CVPR 2023 UG$^2$+ Track 3). Details regarding the challenge are available at http://cvpr2023.ug2challenge.org/track3.html. Our Restormer-Plus outperformed all other submitted solutions in terms of peak signal-to-noise ratio (PSNR). It consists mainly of four modules: the single image de-raining module, the median filtering module, the weighted averaging module, and the post-processing module. We named the single-image de-raining module Restormer-X, which is built on Restormer and performed on each rainy image. The median filtering module is employed as a median operator for the 300 rainy images associated with each scene. The weighted averaging module combines the median filtering results with that of Restormer-X to alleviate overfitting if we only use Restormer-X. Finally, the post-processing module is used to improve the brightness restoration. Together, these modules render Restormer-Plus to be one state-of-the-art solution to the GT-RAIN Challenge. Our code is available at https://github.com/ZJLAB-AMMI/Restormer-Plus.

27.Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style Transfer

Authors:Nisha Huang, Yuxin Zhang, Weiming Dong

Abstract: Large-scale text-to-video diffusion models have demonstrated an exceptional ability to synthesize diverse videos. However, due to the lack of extensive text-to-video datasets and the necessary computational resources for training, directly applying these models for video stylization remains difficult. Also, given that the noise addition process on the input content is random and destructive, fulfilling the style transfer task's content preservation criteria is challenging. This paper proposes a zero-shot video stylization method named Style-A-Video, which utilizes a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization. We improve the guidance condition in the denoising process, establishing a balance between artistic expression and structure preservation. Furthermore, to decrease inter-frame flicker and avoid the formation of additional artifacts, we employ a sampling optimization and a temporal consistency module. Extensive experiments show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions. Code will be available at https://github.com/haha-lisa/Style-A-Video.

28.Real-time instance segmentation with polygons using an Intersection-over-Union loss

Authors:Katia Jodogne-Del Litto, Guillaume-Alexandre Bilodeau

Abstract: Predicting a binary mask for an object is more accurate but also more computationally expensive than a bounding box. Polygonal masks as developed in CenterPoly can be a good compromise. In this paper, we improve over CenterPoly by enhancing the classical regression L1 loss with a novel region-based loss and a novel order loss, as well as with a new training process for the vertices prediction head. Moreover, the previous methods that predict polygonal masks use different coordinate systems, but it is not clear if one is better than another, if we abstract the architecture requirement. We therefore investigate their impact on the prediction. We also use a new evaluation protocol with oracle predictions for the detection head, to further isolate the segmentation process and better compare the polygonal masks with binary masks. Our instance segmentation method is trained and tested with challenging datasets containing urban scenes, with a high density of road users. Experiments show, in particular, that using a combination of a regression loss and a region-based loss allows significant improvements on the Cityscapes and IDD test set compared to CenterPoly. Moreover the inference stage remains fast enough to reach real-time performance with an average of 0.045 s per frame for 2048$\times$1024 images on a single RTX 2070 GPU. The code is available $\href{https://github.com/KatiaJDL/CenterPoly-v2}{\text{here}}$.

29.Effects of Real-Life Traffic Sign Alteration on YOLOv7- an Object Recognition Model

Authors:Farhin Farhad Riya, Shahinul Hoque, Md Saif Hassan Onim, Edward Michaud, Edmon Begoli

Abstract: The advancement of Image Processing has led to the widespread use of Object Recognition (OR) models in various applications, such as airport security and mail sorting. These models have become essential in signifying the capabilities of AI and supporting vital services like national postal operations. However, the performance of OR models can be impeded by real-life scenarios, such as traffic sign alteration. Therefore, this research investigates the effects of altered traffic signs on the accuracy and performance of object recognition models. To this end, a publicly available dataset was used to create different types of traffic sign alterations, including changes to size, shape, color, visibility, and angles. The impact of these alterations on the YOLOv7 (You Only Look Once) model's detection and classification abilities were analyzed. It reveals that the accuracy of object detection models decreases significantly when exposed to modified traffic signs under unlikely conditions. This study highlights the significance of enhancing the robustness of object detection models in real-life scenarios and the need for further investigation in this area to improve their accuracy and reliability.

30.Recursions Are All You Need: Towards Efficient Deep Unfolding Networks

Authors:Rawwad Alhejaili King Fahd University of Petroleum and Minerals Electrical Engineering Department SDAIA-KFUPM Joint Research Center for Artificial Intelligence, Motaz Alfarraj King Fahd University of Petroleum and Minerals Electrical Engineering Department SDAIA-KFUPM Joint Research Center for Artificial Intelligence, Hamzah Luqman King Fahd University of Petroleum and Minerals Information and Computer Science Department, Ali Al-Shaikhi King Fahd University of Petroleum and Minerals Electrical Engineering Department

Abstract: The use of deep unfolding networks in compressive sensing (CS) has seen wide success as they provide both simplicity and interpretability. However, since most deep unfolding networks are iterative, this incurs significant redundancies in the network. In this work, we propose a novel recursion-based framework to enhance the efficiency of deep unfolding models. First, recursions are used to effectively eliminate the redundancies in deep unfolding networks. Secondly, we randomize the number of recursions during training to decrease the overall training time. Finally, to effectively utilize the power of recursions, we introduce a learnable unit to modulate the features of the model based on both the total number of iterations and the current iteration index. To evaluate the proposed framework, we apply it to both ISTA-Net+ and COAST. Extensive testing shows that our proposed framework allows the network to cut down as much as 75% of its learnable parameters while mostly maintaining its performance, and at the same time, it cuts around 21% and 42% from the training time for ISTA-Net+ and COAST respectively. Moreover, when presented with a limited training dataset, the recursive models match or even outperform their respective non-recursive baseline. Codes and pretrained models are available at https://github.com/Rawwad-Alhejaili/Recursions-Are-All-You-Need .

31.Self-supervised dense representation learning for live-cell microscopy with time arrow prediction

Authors:Benjamin Gallusser, Max Stieber, Martin Weigert

Abstract: State-of-the-art object detection and segmentation methods for microscopy images rely on supervised machine learning, which requires laborious manual annotation of training data. Here we present a self-supervised method based on time arrow prediction pre-training that learns dense image representations from raw, unlabeled live-cell microscopy videos. Our method builds upon the task of predicting the correct order of time-flipped image regions via a single-image feature extractor and a subsequent time arrow prediction head. We show that the resulting dense representations capture inherently time-asymmetric biological processes such as cell divisions on a pixel-level. We furthermore demonstrate the utility of these representations on several live-cell microscopy datasets for detection and segmentation of dividing cells, as well as for cell state classification. Our method outperforms supervised methods, particularly when only limited ground truth annotations are available as is commonly the case in practice. We provide code at https://github.com/weigertlab/tarrow.

32.RMES: Real-Time Micro-Expression Spotting Using Phase From Riesz Pyramid

Authors:Yini Fang, Didan Deng, Liang Wu, Frederic Jumelle, Bertram Shi

Abstract: Micro-expressions (MEs) are involuntary and subtle facial expressions that are thought to reveal feelings people are trying to hide. ME spotting detects the temporal intervals containing MEs in videos. Detecting such quick and subtle motions from long videos is difficult. Recent works leverage detailed facial motion representations, such as the optical flow, and deep learning models, leading to high computational complexity. To reduce computational complexity and achieve real-time operation, we propose RMES, a real-time ME spotting framework. We represent motion using phase computed by Riesz Pyramid, and feed this motion representation into a three-stream shallow CNN, which predicts the likelihood of each frame belonging to an ME. In comparison to optical flow, phase provides more localized motion estimates, which are essential for ME spotting, resulting in higher performance. Using phase also reduces the required computation of the ME spotting pipeline by 77.8%. Despite its relative simplicity and low computational complexity, our framework achieves state-of-the-art performance on two public datasets: CAS(ME)2 and SAMM Long Videos.

33.EFE: End-to-end Frame-to-Gaze Estimation

Authors:Haldun Balim, Seonwook Park, Xi Wang, Xucong Zhang, Otmar Hilliges

Abstract: Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding factors (such as clothing and hair) is believed to benefit the final model performance. However, this eye/face patch cropping process is expensive, erroneous, and implementation-specific for different methods. In this paper, we propose a frame-to-gaze network that directly predicts both 3D gaze origin and 3D gaze direction from the raw frame out of the camera without any face or eye cropping. Our method demonstrates that direct gaze regression from the raw downscaled frame, from FHD/HD to VGA/HVGA resolution, is possible despite the challenges of having very few pixels in the eye region. The proposed method achieves comparable results to state-of-the-art methods in Point-of-Gaze (PoG) estimation on three public gaze datasets: GazeCapture, MPIIFaceGaze, and EVE, and generalizes well to extreme camera view changes.

34.Integrating Holistic and Local Information to Estimate Emotional Reaction Intensity

Authors:Yini Fang, Liang Wu, Frederic Jumelle, Bertram Shi

Abstract: Video-based Emotional Reaction Intensity (ERI) estimation measures the intensity of subjects' reactions to stimuli along several emotional dimensions from videos of the subject as they view the stimuli. We propose a multi-modal architecture for video-based ERI combining video and audio information. Video input is encoded spatially first, frame-by-frame, combining features encoding holistic aspects of the subjects' facial expressions and features encoding spatially localized aspects of their expressions. Input is then combined across time: from frame-to-frame using gated recurrent units (GRUs), then globally by a transformer. We handle variable video length with a regression token that accumulates information from all frames into a fixed-dimensional vector independent of video length. Audio information is handled similarly: spectral information extracted within each frame is integrated across time by a cascade of GRUs and a transformer with regression token. The video and audio regression tokens' outputs are merged by concatenation, then input to a final fully connected layer producing intensity estimates. Our architecture achieved excellent performance on the Hume-Reaction dataset in the ERI Esimation Challenge of the Fifth Competition on Affective Behavior Analysis in-the-Wild (ABAW5). The Pearson Correlation Coefficients between estimated and subject self-reported scores, averaged across all emotions, were 0.455 on the validation dataset and 0.4547 on the test dataset, well above the baselines. The transformer's self-attention mechanism enables our architecture to focus on the most critical video frames regardless of length. Ablation experiments establish the advantages of combining holistic/local features and of multi-modal integration. Code available at https://github.com/HKUST-NISL/ABAW5.

35.ColonMapper: topological mapping and localization for colonoscopy

Authors:Javier Morlana, Juan D. Tardós, J. M. M. Montiel

Abstract: Mapping and localization in endoluminal cavities from colonoscopies or gastroscopies has to overcome the challenge of significant shape and illumination changes between reobservations of the same endoluminal location. Instead of geometrical maps that strongly rely on a fixed scene geometry, topological maps are more adequate because they focus on visual place recognition, i.e. the capability to determine if two video shots are imaging the same location. We propose a topological mapping and localization system able to operate on real human colonoscopies. The map is a graph where each node codes a colon location by a set of real images of that location. The edges represent traversability between two nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based image-matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we propose a GeM global descriptor able to achieve high recall with significant changes in the scene. The addition of a Bayesian filter processing the map graph boosts the accuracy of the long-term place recognition, enabling relocalization in a previously built map. In the experiments, we construct a map during the withdrawal phase of a first colonoscopy. Subsequently, we prove the ability to relocalize within this map during a second colonoscopy of the same patient two weeks later. Code and models will be available upon acceptance.

36.Fashion CUT: Unsupervised domain adaptation for visual pattern classification in clothes using synthetic data and pseudo-labels

Authors:Enric Moreu, Alex Martinelli, Martina Naughton, Philip Kelly, Noel E. O'Connor

Abstract: Accurate product information is critical for e-commerce stores to allow customers to browse, filter, and search for products. Product data quality is affected by missing or incorrect information resulting in poor customer experience. While machine learning can be used to correct inaccurate or missing information, achieving high performance on fashion image classification tasks requires large amounts of annotated data, but it is expensive to generate due to labeling costs. One solution can be to generate synthetic data which requires no manual labeling. However, training a model with a dataset of solely synthetic images can lead to poor generalization when performing inference on real-world data because of the domain shift. We introduce a new unsupervised domain adaptation technique that converts images from the synthetic domain into the real-world domain. Our approach combines a generative neural network and a classifier that are jointly trained to produce realistic images while preserving the synthetic label information. We found that using real-world pseudo-labels during training helps the classifier to generalize in the real-world domain, reducing the synthetic bias. We successfully train a visual pattern classification model in the fashion domain without real-world annotations. Experiments show that our method outperforms other unsupervised domain adaptation algorithms.

37.Group Activity Recognition via Dynamic Composition and Interaction

Authors:Youliang Zhang, Zhuo Zhou, Wenxuan Liu, Danni Xu, Zheng Wang

Abstract: Previous group activity recognition approaches were limited to reasoning using human relations or finding important subgroups and tended to ignore indispensable group composition and human-object interactions. This absence makes a partial interpretation of the scene and increases the interference of irrelevant actions on the results. Therefore, we propose our DynamicFormer with Dynamic composition Module (DcM) and Dynamic interaction Module (DiM) to model relations and locations of persons and discriminate the contribution of participants, respectively. Our findings on group composition and human-object interaction inspire our core idea. Group composition tells us the location of people and their relations inside the group, while interaction reflects the relation between humans and objects outside the group. We utilize spatial and temporal encoders in DcM to model our dynamic composition and build DiM to explore interaction with a novel GCN, which has a transformer inside to consider the temporal neighbors of human/object. Also, a Multi-level Dynamic Integration is employed to integrate features from different levels. We conduct extensive experiments on two public datasets and show that our method achieves state-of-the-art.

38.PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces

Authors:Yiqun Wang, Ivan Skorokhodov, Peter Wonka

Abstract: A signed distance function (SDF) parametrized by an MLP is a common ingredient of neural surface reconstruction. We build on the successful recent method NeuS to extend it by three new components. The first component is to borrow the tri-plane representation from EG3D and represent signed distance fields as a mixture of tri-planes and MLPs instead of representing it with MLPs only. Using tri-planes leads to a more expressive data structure but will also introduce noise in the reconstructed surface. The second component is to use a new type of positional encoding with learnable weights to combat noise in the reconstruction process. We divide the features in the tri-plane into multiple frequency scales and modulate them with sin and cos functions of different frequencies. The third component is to use learnable convolution operations on the tri-plane features using self-attention convolution to produce features with different frequency bands. The experiments show that PET-NeuS achieves high-fidelity surface reconstruction on standard datasets. Following previous work and using the Chamfer metric as the most important way to measure surface reconstruction quality, we are able to improve upon the NeuS baseline by 57% on Nerf-synthetic (0.84 compared to 1.97) and by 15.5% on DTU (0.71 compared to 0.84). The qualitative evaluation reveals how our method can better control the interference of high-frequency noise. Code available at \url{https://github.com/yiqun-wang/PET-NeuS}.

39.Region-based Contrastive Pretraining for Medical Image Retrieval with Anatomic Query

Authors:Ho Hin Lee, Alberto Santamaria-Pang, Jameson Merkow, Ozan Oktay, Fernando Pérez-García, Javier Alvarez-Valle, Ivan Tarapov

Abstract: We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR) that demonstrates the feasibility of medical image retrieval with similar anatomical regions. RegionMIR addresses two major challenges for medical image retrieval i) standardization of clinically relevant searching criteria (e.g., anatomical, pathology-based), and ii) localization of anatomical area of interests that are semantically meaningful. In this work, we propose an ROI image retrieval image network that retrieves images with similar anatomy by extracting anatomical features (via bounding boxes) and evaluate similarity between pairwise anatomy-categorized features between the query and the database of images using contrastive learning. ROI queries are encoded using a contrastive-pretrained encoder that was fine-tuned for anatomy classification, which generates an anatomical-specific latent space for region-correlated image retrieval. During retrieval, we compare the anatomically encoded query to find similar features within a feature database generated from training samples, and retrieve images with similar regions from training samples. We evaluate our approach on both anatomy classification and image retrieval tasks using the Chest ImaGenome Dataset. Our proposed strategy yields an improvement over state-of-the-art pretraining and co-training strategies, from 92.24 to 94.12 (2.03%) classification accuracy in anatomies. We qualitatively evaluate the image retrieval performance demonstrating generalizability across multiple anatomies with different morphology.

40.Privacy-Preserving Collaborative Chinese Text Recognition with Federated Learning

Authors:Shangchao Su, Haiyang Yu, Bin Li, Xiangyang Xue

Abstract: In Chinese text recognition, to compensate for the insufficient local data and improve the performance of local few-shot character recognition, it is often necessary for one organization to collect a large amount of data from similar organizations. However, due to the natural presence of private information in text data, different organizations are unwilling to share private data, such as addresses and phone numbers. Therefore, it becomes increasingly important to design a privacy-preserving collaborative training framework for the Chinese text recognition task. In this paper, we introduce personalized federated learning (pFL) into the Chinese text recognition task and propose the pFedCR algorithm, which significantly improves the model performance of each client (organization) without sharing private data. Specifically, based on CRNN, to handle the non-iid problem of client data, we add several attention layers to the model and design a two-stage training approach for the client. In addition, we fine-tune the output layer of the model using a virtual dataset on the server, mitigating the problem of character imbalance in Chinese documents. The proposed approach is validated on public benchmarks and two self-built real-world industrial scenario datasets. The experimental results show that the pFedCR algorithm can improve the performance of local personalized models while also improving their generalization performance on other client data domains. Compared to local training within an organization, pFedCR improves model performance by about 20%. Compared to other state-of-the-art personalized federated learning methods, pFedCR improves performance by 6%~8%. Moreover, through federated learning, pFedCR can correct erroneous information in the ground truth.

41.Can point cloud networks learn statistical shape models of anatomies?

Authors:Jadie Adams, Shireen Elhabian

Abstract: Statistical Shape Modeling (SSM) is a valuable tool for investigating and quantifying anatomical variations within populations of anatomies. However, traditional correspondence-based SSM generation methods require a time-consuming re-optimization process each time a new subject is added to the cohort, making the inference process prohibitive for clinical research. Additionally, they require complete geometric proxies (e.g., high-resolution binary volumes or surface meshes) as input shapes to construct the SSM. Unordered 3D point cloud representations of shapes are more easily acquired from various medical imaging practices (e.g., thresholded images and surface scanning). Point cloud deep networks have recently achieved remarkable success in learning permutation-invariant features for different point cloud tasks (e.g., completion, semantic segmentation, classification). However, their application to learning SSM from point clouds is to-date unexplored. In this work, we demonstrate that existing point cloud encoder-decoder-based completion networks can provide an untapped potential for SSM, capturing population-level statistical representations of shapes while reducing the inference burden and relaxing the input requirement. We discuss the limitations of these techniques to the SSM application and suggest future improvements. Our work paves the way for further exploration of point cloud deep learning for SSM, a promising avenue for advancing shape analysis literature and broadening SSM to diverse use cases.

42.Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning

Authors:Wei-Hung Weng, Sebastien Baur, Mayank Daswani, Christina Chen, Lauren Harrell, Sujay Kakarmath, Mariam Jabara, Babak Behsaz, Cory Y. McLean, Yossi Matias, Greg S. Corrado, Shravya Shetty, Shruthi Prabhakara, Yun Liu, Goodarz Danaei, Diego Ardila

Abstract: Cardiovascular diseases (CVDs) are responsible for a large proportion of premature deaths in low- and middle-income countries. Early CVD detection and intervention is critical in these populations, yet many existing CVD risk scores require a physical examination or lab measurements, which can be challenging in such health systems due to limited accessibility. Here we investigated the potential to use photoplethysmography (PPG), a sensing technology available on most smartphones that can potentially enable large-scale screening at low cost, for CVD risk prediction. We developed a deep learning PPG-based CVD risk score (DLS) to predict the probability of having major adverse cardiovascular events (MACE: non-fatal myocardial infarction, stroke, and cardiovascular death) within ten years, given only age, sex, smoking status and PPG as predictors. We compared the DLS with the office-based refit-WHO score, which adopts the shared predictors from WHO and Globorisk scores (age, sex, smoking status, height, weight and systolic blood pressure) but refitted on the UK Biobank (UKB) cohort. In UKB cohort, DLS's C-statistic (71.1%, 95% CI 69.9-72.4) was non-inferior to office-based refit-WHO score (70.9%, 95% CI 69.7-72.2; non-inferiority margin of 2.5%, p<0.01). The calibration of the DLS was satisfactory, with a 1.8% mean absolute calibration error. Adding DLS features to the office-based score increased the C-statistic by 1.0% (95% CI 0.6-1.4). DLS predicts ten-year MACE risk comparable with the office-based refit-WHO score. It provides a proof-of-concept and suggests the potential of a PPG-based approach strategies for community-based primary prevention in resource-limited regions.

43.SwinIA: Self-Supervised Blind-Spot Image Denoising with Zero Convolutions

Authors:Mikhail Papkov, Pavel Chizhov

Abstract: The essence of self-supervised image denoising is to restore the signal from the noisy image alone. State-of-the-art solutions for this task rely on the idea of masking pixels and training a fully-convolutional neural network to impute them. This most often requires multiple forward passes, information about the noise model, and intricate regularization functions. In this paper, we propose a Swin Transformer-based Image Autoencoder (SwinIA), the first convolution-free architecture for self-supervised denoising. It can be trained end-to-end with a simple mean squared error loss without masking and does not require any prior knowledge about clean data or noise distribution. Despite its simplicity, SwinIA establishes state-of-the-art on several common benchmarks.

44.InternChat: Solving Vision-Centric Tasks by Interacting with Chatbots Beyond Language

Authors:Zhaoyang Liu, Yinan He, Wenhai Wang, Weiyun Wang, Yi Wang, Shoufa Chen, Qinglong Zhang, Yang Yang, Qingyun Li, Jiashuo Yu, Kunchang Li, Zhe Chen, Xue Yang, Xizhou Zhu, Yali Wang, Limin Wang, Ping Luo, Jifeng Dai, Yu Qiao

Abstract: We present an interactive visual framework named InternChat, or iChat for short. The framework integrates chatbots that have planning and reasoning capabilities, such as ChatGPT, with non-verbal instructions like pointing movements that enable users to directly manipulate images or videos on the screen. Pointing (including gestures, cursors, etc.) movements can provide more flexibility and precision in performing vision-centric tasks that require fine-grained control, editing, and generation of visual content. The name InternChat stands for interaction, nonverbal, and chatbots. Different from existing interactive systems that rely on pure language, by incorporating pointing instructions, the proposed iChat significantly improves the efficiency of communication between users and chatbots, as well as the accuracy of chatbots in vision-centric tasks, especially in complicated visual scenarios where the number of objects is greater than 2. Additionally, in iChat, an auxiliary control mechanism is used to improve the control capability of LLM, and a large vision-language model termed Husky is fine-tuned for high-quality multi-modal dialogue (impressing ChatGPT-3.5-turbo with 93.89% GPT-4 Quality). We hope this work can spark new ideas and directions for future interactive visual systems. Welcome to watch the code at https://github.com/OpenGVLab/InternChat.

45.ImageBind: One Embedding Space To Bind Them All

Authors:Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, Ishan Misra

Abstract: We present ImageBind, an approach to learn a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. We show that all combinations of paired data are not necessary to train such a joint embedding, and only image-paired data is sufficient to bind the modalities together. ImageBind can leverage recent large scale vision-language models, and extends their zero-shot capabilities to new modalities just by using their natural pairing with images. It enables novel emergent applications 'out-of-the-box' including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation. The emergent capabilities improve with the strength of the image encoder and we set a new state-of-the-art on emergent zero-shot recognition tasks across modalities, outperforming specialist supervised models. Finally, we show strong few-shot recognition results outperforming prior work, and that ImageBind serves as a new way to evaluate vision models for visual and non-visual tasks.