arXiv daily

Computer Vision and Pattern Recognition (cs.CV)

Wed, 26 Apr 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.TextDeformer: Geometry Manipulation using Text Guidance

Authors:William Gao, Noam Aigerman, Thibault Groueix, Vladimir G. Kim, Rana Hanocka

Abstract: We present a technique for automatically producing a deformation of an input triangle mesh, guided solely by a text prompt. Our framework is capable of deformations that produce both large, low-frequency shape changes, and small high-frequency details. Our framework relies on differentiable rendering to connect geometry to powerful pre-trained image encoders, such as CLIP and DINO. Notably, updating mesh geometry by taking gradient steps through differentiable rendering is notoriously challenging, commonly resulting in deformed meshes with significant artifacts. These difficulties are amplified by noisy and inconsistent gradients from CLIP. To overcome this limitation, we opt to represent our mesh deformation through Jacobians, which updates deformations in a global, smooth manner (rather than locally-sub-optimal steps). Our key observation is that Jacobians are a representation that favors smoother, large deformations, leading to a global relation between vertices and pixels, and avoiding localized noisy gradients. Additionally, to ensure the resulting shape is coherent from all 3D viewpoints, we encourage the deep features computed on the 2D encoding of the rendering to be consistent for a given vertex from all viewpoints. We demonstrate that our method is capable of smoothly-deforming a wide variety of source mesh and target text prompts, achieving both large modifications to, e.g., body proportions of animals, as well as adding fine semantic details, such as shoe laces on an army boot and fine details of a face.

2.Discrepancy-Guided Reconstruction Learning for Image Forgery Detection

Authors:Zenan Shi, Haipeng Chen, Long Chen, Dong Zhang

Abstract: In this paper, we propose a novel image forgery detection paradigm for boosting the model learning capacity on both forgery-sensitive and genuine compact visual patterns. Compared to the existing methods that only focus on the discrepant-specific patterns (\eg, noises, textures, and frequencies), our method has a greater generalization. Specifically, we first propose a Discrepancy-Guided Encoder (DisGE) to extract forgery-sensitive visual patterns. DisGE consists of two branches, where the mainstream backbone branch is used to extract general semantic features, and the accessorial discrepant external attention branch is used to extract explicit forgery cues. Besides, a Double-Head Reconstruction (DouHR) module is proposed to enhance genuine compact visual patterns in different granular spaces. Under DouHR, we further introduce a Discrepancy-Aggregation Detector (DisAD) to aggregate these genuine compact visual patterns, such that the forgery detection capability on unknown patterns can be improved. Extensive experimental results on four challenging datasets validate the effectiveness of our proposed method against state-of-the-art competitors.

3.Deep Lifelong Cross-modal Hashing

Authors:Liming Xu, Hanqi Li, Bochuan Zheng, Weisheng Li, Jiancheng Lv

Abstract: Hashing methods have made significant progress in cross-modal retrieval tasks with fast query speed and low storage cost. Among them, deep learning-based hashing achieves better performance on large-scale data due to its excellent extraction and representation ability for nonlinear heterogeneous features. However, there are still two main challenges in catastrophic forgetting when data with new categories arrive continuously, and time-consuming for non-continuous hashing retrieval to retrain for updating. To this end, we, in this paper, propose a novel deep lifelong cross-modal hashing to achieve lifelong hashing retrieval instead of re-training hash function repeatedly when new data arrive. Specifically, we design lifelong learning strategy to update hash functions by directly training the incremental data instead of retraining new hash functions using all the accumulated data, which significantly reduce training time. Then, we propose lifelong hashing loss to enable original hash codes participate in lifelong learning but remain invariant, and further preserve the similarity and dis-similarity among original and incremental hash codes to maintain performance. Additionally, considering distribution heterogeneity when new data arriving continuously, we introduce multi-label semantic similarity to supervise hash learning, and it has been proven that the similarity improves performance with detailed analysis. Experimental results on benchmark datasets show that the proposed methods achieves comparative performance comparing with recent state-of-the-art cross-modal hashing methods, and it yields substantial average increments over 20\% in retrieval accuracy and almost reduces over 80\% training time when new data arrives continuously.

4.Streamlined Global and Local Features Combinator (SGLC) for High Resolution Image Dehazing

Authors:Bilel Benjdira, Anas M. Ali, Anis Koubaa

Abstract: Image Dehazing aims to remove atmospheric fog or haze from an image. Although the Dehazing models have evolved a lot in recent years, few have precisely tackled the problem of High-Resolution hazy images. For this kind of image, the model needs to work on a downscaled version of the image or on cropped patches from it. In both cases, the accuracy will drop. This is primarily due to the inherent failure to combine global and local features when the image size increases. The Dehazing model requires global features to understand the general scene peculiarities and the local features to work better with fine and pixel details. In this study, we propose the Streamlined Global and Local Features Combinator (SGLC) to solve these issues and to optimize the application of any Dehazing model to High-Resolution images. The SGLC contains two successive blocks. The first is the Global Features Generator (GFG) which generates the first version of the Dehazed image containing strong global features. The second block is the Local Features Enhancer (LFE) which improves the local feature details inside the previously generated image. When tested on the Uformer architecture for Dehazing, SGLC increased the PSNR metric by a significant margin. Any other model can be incorporated inside the SGLC process to improve its efficiency on High-Resolution input data.

5.VGOS: Voxel Grid Optimization for View Synthesis from Sparse Inputs

Authors:Jiakai Sun, Zhanjie Zhang, Jiafu Chen, Guangyuan Li, Boyan Ji, Lei Zhao, Wei Xing

Abstract: Neural Radiance Fields (NeRF) has shown great success in novel view synthesis due to its state-of-the-art quality and flexibility. However, NeRF requires dense input views (tens to hundreds) and a long training time (hours to days) for a single scene to generate high-fidelity images. Although using the voxel grids to represent the radiance field can significantly accelerate the optimization process, we observe that for sparse inputs, the voxel grids are more prone to overfitting to the training views and will have holes and floaters, which leads to artifacts. In this paper, we propose VGOS, an approach for fast (3-5 minutes) radiance field reconstruction from sparse inputs (3-10 views) to address these issues. To improve the performance of voxel-based radiance field in sparse input scenarios, we propose two methods: (a) We introduce an incremental voxel training strategy, which prevents overfitting by suppressing the optimization of peripheral voxels in the early stage of reconstruction. (b) We use several regularization techniques to smooth the voxels, which avoids degenerate solutions. Experiments demonstrate that VGOS achieves state-of-the-art performance for sparse inputs with super-fast convergence. Code will be available at https://github.com/SJoJoK/VGOS.

6.Group Equivariant BEV for 3D Object Detection

Authors:Hongwei Liu, Jian Yang, Jianfeng Zhang, Dongheng Shao, Jielong Guo, Shaobo Li, Xuan Tang, Xian Wei

Abstract: Recently, 3D object detection has attracted significant attention and achieved continuous improvement in real road scenarios. The environmental information is collected from a single sensor or multi-sensor fusion to detect interested objects. However, most of the current 3D object detection approaches focus on developing advanced network architectures to improve the detection precision of the object rather than considering the dynamic driving scenes, where data collected from sensors equipped in the vehicle contain various perturbation features. As a result, existing work cannot still tackle the perturbation issue. In order to solve this problem, we propose a group equivariant bird's eye view network (GeqBevNet) based on the group equivariant theory, which introduces the concept of group equivariant into the BEV fusion object detection network. The group equivariant network is embedded into the fused BEV feature map to facilitate the BEV-level rotational equivariant feature extraction, thus leading to lower average orientation error. In order to demonstrate the effectiveness of the GeqBevNet, the network is verified on the nuScenes validation dataset in which mAOE can be decreased to 0.325. Experimental results demonstrate that GeqBevNet can extract more rotational equivariant features in the 3D object detection of the actual road scene and improve the performance of object orientation prediction.

7.Filter Pruning via Filters Similarity in Consecutive Layers

Authors:Xiaorui Wang, Jun Wang, Xin Tang, Peng Gao, Rui Fang, Guotong Xie

Abstract: Filter pruning is widely adopted to compress and accelerate the Convolutional Neural Networks (CNNs), but most previous works ignore the relationship between filters and channels in different layers. Processing each layer independently fails to utilize the collaborative relationship across layers. In this paper, we intuitively propose a novel pruning method by explicitly leveraging the Filters Similarity in Consecutive Layers (FSCL). FSCL compresses models by pruning filters whose corresponding features are more worthless in the model. The extensive experiments demonstrate the effectiveness of FSCL, and it yields remarkable improvement over state-of-the-art on accuracy, FLOPs and parameter reduction on several benchmark models and datasets.

8.Development of a Realistic Crowd Simulation Environment for Fine-grained Validation of People Tracking Methods

Authors:Paweł Foszner, Agnieszka Szczęsna, Luca Ciampi, Nicola Messina, Adam Cygan, Bartosz Bizoń, Michał Cogiel, Dominik Golba, Elżbieta Macioszek, Michał Staniszewski

Abstract: Generally, crowd datasets can be collected or generated from real or synthetic sources. Real data is generated by using infrastructure-based sensors (such as static cameras or other sensors). The use of simulation tools can significantly reduce the time required to generate scenario-specific crowd datasets, facilitate data-driven research, and next build functional machine learning models. The main goal of this work was to develop an extension of crowd simulation (named CrowdSim2) and prove its usability in the application of people-tracking algorithms. The simulator is developed using the very popular Unity 3D engine with particular emphasis on the aspects of realism in the environment, weather conditions, traffic, and the movement and models of individual agents. Finally, three methods of tracking were used to validate generated dataset: IOU-Tracker, Deep-Sort, and Deep-TAMA.

9.Efficient Explainable Face Verification based on Similarity Score Argument Backpropagation

Authors:Marco Huber, Anh Thi Luu, Philipp Terhörst, Naser Damer

Abstract: Explainable Face Recognition is gaining growing attention as the use of the technology is gaining ground in security-critical applications. Understanding why two faces images are matched or not matched by a given face recognition system is important to operators, users, anddevelopers to increase trust, accountability, develop better systems, and highlight unfair behavior. In this work, we propose xSSAB, an approach to back-propagate similarity score-based arguments that support or oppose the face matching decision to visualize spatial maps that indicate similar and dissimilar areas as interpreted by the underlying FR model. Furthermore, we present Patch-LFW, a new explainable face verification benchmark that enables along with a novel evaluation protocol, the first quantitative evaluation of the validity of similarity and dissimilarity maps in explainable face recognition approaches. We compare our efficient approach to state-of-the-art approaches demonstrating a superior trade-off between efficiency and performance. The code as well as the proposed Patch-LFW is publicly available at: https://github.com/marcohuber/xSSAB.

10.Are Explainability Tools Gender Biased? A Case Study on Face Presentation Attack Detection

Authors:Marco Huber, Meiling Fang, Fadi Boutros, Naser Damer

Abstract: Face recognition (FR) systems continue to spread in our daily lives with an increasing demand for higher explainability and interpretability of FR systems that are mainly based on deep learning. While bias across demographic groups in FR systems has already been studied, the bias of explainability tools has not yet been investigated. As such tools aim at steering further development and enabling a better understanding of computer vision problems, the possible existence of bias in their outcome can lead to a chain of biased decisions. In this paper, we explore the existence of bias in the outcome of explainability tools by investigating the use case of face presentation attack detection. By utilizing two different explainability tools on models with different levels of bias, we investigate the bias in the outcome of such tools. Our study shows that these tools show clear signs of gender bias in the quality of their explanations.

11.Learnable Ophthalmology SAM

Authors:Zhongxi Qiu, Yan Hu, Heng Li, Jiang Liu

Abstract: Segmentation is vital for ophthalmology image analysis. But its various modal images hinder most of the existing segmentation algorithms applications, as they rely on training based on a large number of labels or hold weak generalization ability. Based on Segment Anything (SAM), we propose a simple but effective learnable prompt layer suitable for multiple target segmentation in ophthalmology multi-modal images, named Learnable Ophthalmology Segment Anything (SAM). The learnable prompt layer learns medical prior knowledge from each transformer layer. During training, we only train the prompt layer and task head based on a one-shot mechanism. We demonstrate the effectiveness of our thought based on four medical segmentation tasks based on nine publicly available datasets. Moreover, we only provide a new improvement thought for applying the existing fundamental CV models in the medical field. Our codes are available at \href{https://github.com/Qsingle/LearnablePromptSAM}{website}.

12.Training-Free Location-Aware Text-to-Image Synthesis

Authors:Jiafeng Mao, Xueting Wang

Abstract: Current large-scale generative models have impressive efficiency in generating high-quality images based on text prompts. However, they lack the ability to precisely control the size and position of objects in the generated image. In this study, we analyze the generative mechanism of the stable diffusion model and propose a new interactive generation paradigm that allows users to specify the position of generated objects without additional training. Moreover, we propose an object detection-based evaluation metric to assess the control capability of location aware generation task. Our experimental results show that our method outperforms state-of-the-art methods on both control capacity and image quality.

13.Compensation Learning in Semantic Segmentation

Authors:Timo Kaiser, Christoph Reinders, Bodo Rosenhahn

Abstract: Label noise and ambiguities between similar classes are challenging problems in developing new models and annotating new data for semantic segmentation. In this paper, we propose Compensation Learning in Semantic Segmentation, a framework to identify and compensate ambiguities as well as label noise. More specifically, we add a ground truth depending and globally learned bias to the classification logits and introduce a novel uncertainty branch for neural networks to induce the compensation bias only to relevant regions. Our method is employed into state-of-the-art segmentation frameworks and several experiments demonstrate that our proposed compensation learns inter-class relations that allow global identification of challenging ambiguities as well as the exact localization of subsequent label noise. Additionally, it enlarges robustness against label noise during training and allows target-oriented manipulation during inference. We evaluate the proposed method on %the widely used datasets Cityscapes, KITTI-STEP, ADE20k, and COCO-stuff10k.

14.Neural-PBIR Reconstruction of Shape, Material, and Illumination

Authors:Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng Zhang, Carl Marshall, Jia-Bin Huang, Shuang Zhao, Zhao Dong

Abstract: Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce a robust object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Specifically, our pipeline firstly leverages a neural stage to produce high-quality but potentially imperfect predictions of object shape, reflectance, and illumination. Then, in the later stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction. Experimental results demonstrate our pipeline significantly outperforms existing reconstruction methods quality-wise and performance-wise.

15.From Chaos Comes Order: Ordering Event Representations for Object Detection

Authors:Nikola Zubić, Daniel Gehrig, Mathias Gehrig, Davide Scaramuzza

Abstract: Today, state-of-the-art deep neural networks that process events first convert them into dense, grid-like input representations before using an off-the-shelf network. However, selecting the appropriate representation for the task traditionally requires training a neural network for each representation and selecting the best one based on the validation score, which is very time-consuming. In this work, we eliminate this bottleneck by selecting the best representation based on the Gromov-Wasserstein Discrepancy (GWD) between the raw events and their representation. It is approximately 200 times faster to compute than training a neural network and preserves the task performance ranking of event representations across multiple representations, network backbones, and datasets. This means that finding a representation with a high task score is equivalent to finding a representation with a low GWD. We use this insight to, for the first time, perform a hyperparameter search on a large family of event representations, revealing new and powerful representations that exceed the state-of-the-art. On object detection, our optimized representation outperforms existing representations by 1.9% mAP on the 1 Mpx dataset and 8.6% mAP on the Gen1 dataset and even outperforms the state-of-the-art by 1.8% mAP on Gen1 and state-of-the-art feed-forward methods by 6.0% mAP on the 1 Mpx dataset. This work opens a new unexplored field of explicit representation optimization for event-based learning methods.

16.Effect of latent space distribution on the segmentation of images with multiple annotations

Authors:Ishaan Bhat, Josien P. W. Pluim, Max A. Viergever, Hugo J. Kuijf

Abstract: We propose the Generalized Probabilistic U-Net, which extends the Probabilistic U-Net by allowing more general forms of the Gaussian distribution as the latent space distribution that can better approximate the uncertainty in the reference segmentations. We study the effect the choice of latent space distribution has on capturing the variation in the reference segmentations for lung tumors and white matter hyperintensities in the brain. We show that the choice of distribution affects the sample diversity of the predictions and their overlap with respect to the reference segmentations. We have made our implementation available at https://github.com/ishaanb92/GeneralizedProbabilisticUNet

17.EasyPortrait - Face Parsing and Portrait Segmentation Dataset

Authors:Alexander Kapitanov, Karina Kvanchiani, Sofia Kirillova

Abstract: Recently, due to COVID-19 and the growing demand for remote work, video conferencing apps have become especially widespread. The most valuable features of video chats are real-time background removal and face beautification. While solving these tasks, computer vision researchers face the problem of having relevant data for the training stage. There is no large dataset with high-quality labeled and diverse images of people in front of a laptop or smartphone camera to train a lightweight model without additional approaches. To boost the progress in this area, we provide a new image dataset, EasyPortrait, for portrait segmentation and face parsing tasks. It contains 20,000 primarily indoor photos of 8,377 unique users, and fine-grained segmentation masks separated into 9 classes. Images are collected and labeled from crowdsourcing platforms. Unlike most face parsing datasets, in EasyPortrait, the beard is not considered part of the skin mask, and the inside area of the mouth is separated from the teeth. These features allow using EasyPortrait for skin enhancement and teeth whitening tasks. This paper describes the pipeline for creating a large-scale and clean image segmentation dataset using crowdsourcing platforms without additional synthetic data. Moreover, we trained several models on EasyPortrait and showed experimental results. Proposed dataset and trained models are publicly available.

18.Cluster Entropy: Active Domain Adaptation in Pathological Image Segmentation

Authors:Xiaoqing Liu, Kengo Araki, Shota Harada, Akihiko Yoshizawa, Kazuhiro Terada, Mariyo Kurata, Naoki Nakajima, Hiroyuki Abe, Tetsuo Ushiku, Ryoma Bise

Abstract: The domain shift in pathological segmentation is an important problem, where a network trained by a source domain (collected at a specific hospital) does not work well in the target domain (from different hospitals) due to the different image features. Due to the problems of class imbalance and different class prior of pathology, typical unsupervised domain adaptation methods do not work well by aligning the distribution of source domain and target domain. In this paper, we propose a cluster entropy for selecting an effective whole slide image (WSI) that is used for semi-supervised domain adaptation. This approach can measure how the image features of the WSI cover the entire distribution of the target domain by calculating the entropy of each cluster and can significantly improve the performance of domain adaptation. Our approach achieved competitive results against the prior arts on datasets collected from two hospitals.

19.Super-NeRF: View-consistent Detail Generation for NeRF super-resolution

Authors:Yuqi Han, Tao Yu, Xiaohang Yu, Yuwang Wang, Qionghai Dai

Abstract: The neural radiance field (NeRF) achieved remarkable success in modeling 3D scenes and synthesizing high-fidelity novel views. However, existing NeRF-based methods focus more on the make full use of the image resolution to generate novel views, but less considering the generation of details under the limited input resolution. In analogy to the extensive usage of image super-resolution, NeRF super-resolution is an effective way to generate the high-resolution implicit representation of 3D scenes and holds great potential applications. Up to now, such an important topic is still under-explored. In this paper, we propose a NeRF super-resolution method, named Super-NeRF, to generate high-resolution NeRF from only low-resolution inputs. Given multi-view low-resolution images, Super-NeRF constructs a consistency-controlling super-resolution module to generate view-consistent high-resolution details for NeRF. Specifically, an optimizable latent code is introduced for each low-resolution input image to control the 2D super-resolution images to converge to the view-consistent output. The latent codes of each low-resolution image are optimized synergistically with the target Super-NeRF representation to fully utilize the view consistency constraint inherent in NeRF construction. We verify the effectiveness of Super-NeRF on synthetic, real-world, and AI-generated NeRF datasets. Super-NeRF achieves state-of-the-art NeRF super-resolution performance on high-resolution detail generation and cross-view consistency.

20.Key-value information extraction from full handwritten pages

Authors:Solène Tarride, Mélodie Boillet, Christopher Kermorvant

Abstract: We propose a Transformer-based approach for information extraction from digitized handwritten documents. Our approach combines, in a single model, the different steps that were so far performed by separate models: feature extraction, handwriting recognition and named entity recognition. We compare this integrated approach with traditional two-stage methods that perform handwriting recognition before named entity recognition, and present results at different levels: line, paragraph, and page. Our experiments show that attention-based models are especially interesting when applied on full pages, as they do not require any prior segmentation step. Finally, we show that they are able to learn from key-value annotations: a list of important words with their corresponding named entities. We compare our models to state-of-the-art methods on three public databases (IAM, ESPOSALLES, and POPP) and outperform previous performances on all three datasets.

21.Synthetic Aperture Anomaly Imaging

Authors:Rakesh John Amala Arokia Nathan, Oliver Bimber

Abstract: Previous research has shown that in the presence of foliage occlusion, anomaly detection performs significantly better in integral images resulting from synthetic aperture imaging compared to applying it to conventional aerial images. In this article, we hypothesize and demonstrate that integrating detected anomalies is even more effective than detecting anomalies in integrals. This results in enhanced occlusion removal, outlier suppression, and higher chances of visually as well as computationally detecting targets that are otherwise occluded. Our hypothesis was validated through both: simulations and field experiments. We also present a real-time application that makes our findings practically available for blue-light organizations and others using commercial drone platforms. It is designed to address use-cases that suffer from strong occlusion caused by vegetation, such as search and rescue, wildlife observation, early wildfire detection, and sur-veillance.

22.Video Frame Interpolation with Densely Queried Bilateral Correlation

Authors:Chang Zhou, Jie Liu, Jie Tang, Gangshan Wu

Abstract: Video Frame Interpolation (VFI) aims to synthesize non-existent intermediate frames between existent frames. Flow-based VFI algorithms estimate intermediate motion fields to warp the existent frames. Real-world motions' complexity and the reference frame's absence make motion estimation challenging. Many state-of-the-art approaches explicitly model the correlations between two neighboring frames for more accurate motion estimation. In common approaches, the receptive field of correlation modeling at higher resolution depends on the motion fields estimated beforehand. Such receptive field dependency makes common motion estimation approaches poor at coping with small and fast-moving objects. To better model correlations and to produce more accurate motion fields, we propose the Densely Queried Bilateral Correlation (DQBC) that gets rid of the receptive field dependency problem and thus is more friendly to small and fast-moving objects. The motion fields generated with the help of DQBC are further refined and up-sampled with context features. After the motion fields are fixed, a CNN-based SynthNet synthesizes the final interpolated frame. Experiments show that our approach enjoys higher accuracy and less inference time than the state-of-the-art. Source code is available at https://github.com/kinoud/DQBC.

23.SIMARA: a database for key-value information extraction from full pages

Authors:Solène Tarride, Mélodie Boillet, Jean-François Moufflet, Christopher Kermorvant

Abstract: We propose a new database for information extraction from historical handwritten documents. The corpus includes 5,393 finding aids from six different series, dating from the 18th-20th centuries. Finding aids are handwritten documents that contain metadata describing older archives. They are stored in the National Archives of France and are used by archivists to identify and find archival documents. Each document is annotated at page-level, and contains seven fields to retrieve. The localization of each field is not available in such a way that this dataset encourages research on segmentation-free systems for information extraction. We propose a model based on the Transformer architecture trained for end-to-end information extraction and provide three sets for training, validation and testing, to ensure fair comparison with future works. The database is freely accessible at https://zenodo.org/record/7868059.

24.Multi-View Stereo Representation Revist: Region-Aware MVSNet

Authors:Yisu Zhang, Jianke Zhu, Lixiang Lin

Abstract: Deep learning-based multi-view stereo has emerged as a powerful paradigm for reconstructing the complete geometrically-detailed objects from multi-views. Most of the existing approaches only estimate the pixel-wise depth value by minimizing the gap between the predicted point and the intersection of ray and surface, which usually ignore the surface topology. It is essential to the textureless regions and surface boundary that cannot be properly reconstructed. To address this issue, we suggest to take advantage of point-to-surface distance so that the model is able to perceive a wider range of surfaces. To this end, we predict the distance volume from cost volume to estimate the signed distance of points around the surface. Our proposed RA-MVSNet is patch-awared, since the perception range is enhanced by associating hypothetical planes with a patch of surface. Therefore, it could increase the completion of textureless regions and reduce the outliers at the boundary. Moreover, the mesh topologies with fine details can be generated by the introduced distance volume. Comparing to the conventional deep learning-based multi-view stereo methods, our proposed RA-MVSNet approach obtains more complete reconstruction results by taking advantage of signed distance supervision. The experiments on both the DTU and Tanks \& Temples datasets demonstrate that our proposed approach achieves the state-of-the-art results.

25.Domain Adaptive and Generalizable Network Architectures and Training Strategies for Semantic Image Segmentation

Authors:Lukas Hoyer, Dengxin Dai, Luc Van Gool

Abstract: Unsupervised domain adaptation (UDA) and domain generalization (DG) enable machine learning models trained on a source domain to perform well on unlabeled or even unseen target domains. As previous UDA&DG semantic segmentation methods are mostly based on outdated networks, we benchmark more recent architectures, reveal the potential of Transformers, and design the DAFormer network tailored for UDA&DG. It is enabled by three training strategies to avoid overfitting to the source domain: While (1) Rare Class Sampling mitigates the bias toward common source domain classes, (2) a Thing-Class ImageNet Feature Distance and (3) a learning rate warmup promote feature transfer from ImageNet pretraining. As UDA&DG are usually GPU memory intensive, most previous methods downscale or crop images. However, low-resolution predictions often fail to preserve fine details while models trained with cropped images fall short in capturing long-range, domain-robust context information. Therefore, we propose HRDA, a multi-resolution framework for UDA&DG, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention. DAFormer and HRDA significantly improve the state-of-the-art UDA&DG by more than 10 mIoU on 5 different benchmarks. The implementation is available at https://github.com/lhoyer/HRDA.

26.Non-rigid Point Cloud Registration for Middle Ear Diagnostics with Endoscopic Optical Coherence Tomography

Authors:Peng Liu, Jonas Golde, Joseph Morgenstern, Sebastian Bodenstedt, Chenpan Li, Yujia Hu, Zhaoyu Chen, Edmund Koch, Marcus Neudert, Stefanie Speidel

Abstract: Purpose: Middle ear infection is the most prevalent inflammatory disease, especially among the pediatric population. Current diagnostic methods are subjective and depend on visual cues from an otoscope, which is limited for otologists to identify pathology. To address this shortcoming, endoscopic optical coherence tomography (OCT) provides both morphological and functional in-vivo measurements of the middle ear. However, due to the shadow of prior structures, interpretation of OCT images is challenging and time-consuming. To facilitate fast diagnosis and measurement, improvement in the readability of OCT data is achieved by merging morphological knowledge from ex-vivo middle ear models with OCT volumetric data, so that OCT applications can be further promoted in daily clinical settings. Methods: We propose C2P-Net: a two-staged non-rigid registration pipeline for complete to partial point clouds, which are sampled from ex-vivo and in-vivo OCT models, respectively. To overcome the lack of labeled training data, a fast and effective generation pipeline in Blender3D is designed to simulate middle ear shapes and extract in-vivo noisy and partial point clouds. Results: We evaluate the performance of C2P-Net through experiments on both synthetic and real OCT datasets. The results demonstrate that C2P-Net is generalized to unseen middle ear point clouds and capable of handling realistic noise and incompleteness in synthetic and real OCT data. Conclusion: In this work, we aim to enable diagnosis of middle ear structures with the assistance of OCT images. We propose C2P-Net: a two-staged non-rigid registration pipeline for point clouds to support the interpretation of in-vivo noisy and partial OCT images for the first time. Code is available at: https://gitlab.com/nct\_tso\_public/c2p-net.

27.PVP: Pre-trained Visual Parameter-Efficient Tuning

Authors:Zhao Song, Ke Yang, Naiyang Guan, Junjie Zhu, Peng Qiao, Qingyong Hu

Abstract: Large-scale pre-trained transformers have demonstrated remarkable success in various computer vision tasks. However, it is still highly challenging to fully fine-tune these models for downstream tasks due to their high computational and storage costs. Recently, Parameter-Efficient Tuning (PETuning) techniques, e.g., Visual Prompt Tuning (VPT) and Low-Rank Adaptation (LoRA), have significantly reduced the computation and storage cost by inserting lightweight prompt modules into the pre-trained models and tuning these prompt modules with a small number of trainable parameters, while keeping the transformer backbone frozen. Although only a few parameters need to be adjusted, most PETuning methods still require a significant amount of downstream task training data to achieve good results. The performance is inadequate on low-data regimes, especially when there are only one or two examples per class. To this end, we first empirically identify the poor performance is mainly due to the inappropriate way of initializing prompt modules, which has also been verified in the pre-trained language models. Next, we propose a Pre-trained Visual Parameter-efficient (PVP) Tuning framework, which pre-trains the parameter-efficient tuning modules first and then leverages the pre-trained modules along with the pre-trained transformer backbone to perform parameter-efficient tuning on downstream tasks. Experiment results on five Fine-Grained Visual Classification (FGVC) and VTAB-1k datasets demonstrate that our proposed method significantly outperforms state-of-the-art PETuning methods.

28.A Symmetric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual Question Answering

Authors:Alireza Salemi, Juan Altmayer Pizzorno, Hamed Zamani

Abstract: Knowledge-Intensive Visual Question Answering (KI-VQA) refers to answering a question about an image whose answer does not lie in the image. This paper presents a new pipeline for KI-VQA tasks, consisting of a retriever and a reader. First, we introduce DEDR, a symmetric dual encoding dense retrieval framework in which documents and queries are encoded into a shared embedding space using uni-modal (textual) and multi-modal encoders. We introduce an iterative knowledge distillation approach that bridges the gap between the representation spaces in these two encoders. Extensive evaluation on two well-established KI-VQA datasets, i.e., OK-VQA and FVQA, suggests that DEDR outperforms state-of-the-art baselines by 11.6% and 30.9% on OK-VQA and FVQA, respectively. Utilizing the passages retrieved by DEDR, we further introduce MM-FiD, an encoder-decoder multi-modal fusion-in-decoder model, for generating a textual answer for KI-VQA tasks. MM-FiD encodes the question, the image, and each retrieved passage separately and uses all passages jointly in its decoder. Compared to competitive baselines in the literature, this approach leads to 5.5% and 8.5% improvements in terms of question answering accuracy on OK-VQA and FVQA, respectively.

29.What Happened 3 Seconds Ago? Inferring the Past with Thermal Imaging

Authors:Zitian Tang, Wenjie Ye, Wei-Chiu Ma, Hang Zhao

Abstract: Inferring past human motion from RGB images is challenging due to the inherent uncertainty of the prediction problem. Thermal images, on the other hand, encode traces of past human-object interactions left in the environment via thermal radiation measurement. Based on this observation, we collect the first RGB-Thermal dataset for human motion analysis, dubbed Thermal-IM. Then we develop a three-stage neural network model for accurate past human pose estimation. Comprehensive experiments show that thermal cues significantly reduce the ambiguities of this task, and the proposed model achieves remarkable performance. The dataset is available at https://github.com/ZitianTang/Thermal-IM.

30.FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation

Authors:Yan Wang, Jian Cheng, Yixin Chen, Shuai Shao, Lanyun Zhu, Zhenzhou Wu, Tao Liu, Haogang Zhu

Abstract: Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.

31.A marker-less human motion analysis system for motion-based biomarker discovery in knee disorders

Authors:Kai Armstrong, Lei Zhang, Yan Wen, Alexander P. Willmott, Paul Lee, Xujioing Ye

Abstract: In recent years the NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients. To help address the increased waiting lists and shortages of staff, we propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression. The proposed method allows for the measurement and analysis of biomechanics and analyse their clinical significance, in both a cheap and sensitive alternative to the currently available commercial alternatives. These methods and results validate the capabilities of standard RGB cameras in clinical environments to capture motion and show that when compared to alternatives such as depth cameras there is a comparable accuracy in the clinical environment. Biomarker identification using Principal Component Analysis (PCA) allows the reduction of the dimensionality to produce the most representative features from motion data, these new biomarkers can then be used to assess the success of treatment and track the progress of rehabilitation. This was validated by applying these techniques on a case study utilising the exploratory use of local anaesthetic applied on knee pain, this allows these new representative biomarkers to be validated as statistically significant (p-value < 0.05).

32.Ray Conditioning: Trading Photo-consistency for Photo-realism in Multi-view Image Generation

Authors:Eric Ming Chen, Sidhanth Holalkere, Ruyu Yan, Kai Zhang, Abe Davis

Abstract: Multi-view image generation attracts particular attention these days due to its promising 3D-related applications, e.g., image viewpoint editing. Most existing methods follow a paradigm where a 3D representation is first synthesized, and then rendered into 2D images to ensure photo-consistency across viewpoints. However, such explicit bias for photo-consistency sacrifices photo-realism, causing geometry artifacts and loss of fine-scale details when these methods are applied to edit real images. To address this issue, we propose ray conditioning, a geometry-free alternative that relaxes the photo-consistency constraint. Our method generates multi-view images by conditioning a 2D GAN on a light field prior. With explicit viewpoint control, state-of-the-art photo-realism and identity consistency, our method is particularly suited for the viewpoint editing task.

33.UniNeXt: Exploring A Unified Architecture for Vision Recognition

Authors:Fangjian Lin, Jianlong Yuan, Sitong Wu, Fan Wang, Zhibin Wang

Abstract: Vision Transformers have shown great potential in computer vision tasks. Most recent works have focused on elaborating the spatial token mixer for performance gains. However, we observe that a well-designed general architecture can significantly improve the performance of the entire backbone, regardless of which spatial token mixer is equipped. In this paper, we propose UniNeXt, an improved general architecture for the vision backbone. To verify its effectiveness, we instantiate the spatial token mixer with various typical and modern designs, including both convolution and attention modules. Compared with the architecture in which they are first proposed, our UniNeXt architecture can steadily boost the performance of all the spatial token mixers, and narrows the performance gap among them. Surprisingly, our UniNeXt equipped with naive local window attention even outperforms the previous state-of-the-art. Interestingly, the ranking of these spatial token mixers also changes under our UniNeXt, suggesting that an excellent spatial token mixer may be stifled due to a suboptimal general architecture, which further shows the importance of the study on the general architecture of vision backbone. All models and codes will be publicly available.

34.Controllable Image Generation via Collage Representations

Authors:Arantxa Casanova, Marlène Careil, Adriana Romero-Soriano, Christopher J. Pal, Jakob Verbeek, Michal Drozdzal

Abstract: Recent advances in conditional generative image models have enabled impressive results. On the one hand, text-based conditional models have achieved remarkable generation quality, by leveraging large-scale datasets of image-text pairs. To enable fine-grained controllability, however, text-based models require long prompts, whose details may be ignored by the model. On the other hand, layout-based conditional models have also witnessed significant advances. These models rely on bounding boxes or segmentation maps for precise spatial conditioning in combination with coarse semantic labels. The semantic labels, however, cannot be used to express detailed appearance characteristics. In this paper, we approach fine-grained scene controllability through image collages which allow a rich visual description of the desired scene as well as the appearance and location of the objects therein, without the need of class nor attribute labels. We introduce "mixing and matching scenes" (M&Ms), an approach that consists of an adversarially trained generative image model which is conditioned on appearance features and spatial positions of the different elements in a collage, and integrates these into a coherent image. We train our model on the OpenImages (OI) dataset and evaluate it on collages derived from OI and MS-COCO datasets. Our experiments on the OI dataset show that M&Ms outperforms baselines in terms of fine-grained scene controllability while being very competitive in terms of image quality and sample diversity. On the MS-COCO dataset, we highlight the generalization ability of our model by outperforming DALL-E in terms of the zero-shot FID metric, despite using two magnitudes fewer parameters and data. Collage based generative models have the potential to advance content creation in an efficient and effective way as they are intuitive to use and yield high quality generations.

35.A Control-Centric Benchmark for Video Prediction

Authors:Stephen Tian, Chelsea Finn, Jiajun Wu

Abstract: Video is a promising source of knowledge for embodied agents to learn models of the world's dynamics. Large deep networks have become increasingly effective at modeling complex video data in a self-supervised manner, as evaluated by metrics based on human perceptual similarity or pixel-wise comparison. However, it remains unclear whether current metrics are accurate indicators of performance on downstream tasks. We find empirically that for planning robotic manipulation, existing metrics can be unreliable at predicting execution success. To address this, we propose a benchmark for action-conditioned video prediction in the form of a control benchmark that evaluates a given model for simulated robotic manipulation through sampling-based planning. Our benchmark, Video Prediction for Visual Planning ($VP^2$), includes simulated environments with 11 task categories and 310 task instance definitions, a full planning implementation, and training datasets containing scripted interaction trajectories for each task category. A central design goal of our benchmark is to expose a simple interface -- a single forward prediction call -- so it is straightforward to evaluate almost any action-conditioned video prediction model. We then leverage our benchmark to study the effects of scaling model size, quantity of training data, and model ensembling by analyzing five highly-performant video prediction models, finding that while scale can improve perceptual quality when modeling visually diverse settings, other attributes such as uncertainty awareness can also aid planning performance.