arXiv daily

Computer Vision and Pattern Recognition (cs.CV)

Mon, 17 Apr 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.One-shot and Partially-Supervised Cell Image Segmentation Using Small Visual Prompt

Authors:Sota Kato, Kazuhiro Hotta

Abstract: Semantic segmentation of microscopic cell images using deep learning is an important technique, however, it requires a large number of images and ground truth labels for training. To address the above problem, we consider an efficient learning framework with as little data as possible, and we propose two types of learning strategies: One-shot segmentation which can learn with only one training sample, and Partially-supervised segmentation which assigns annotations to only a part of images. Furthermore, we introduce novel segmentation methods using the small prompt images inspired by prompt learning in recent studies. Our proposed methods use a pre-trained model based on only cell images and teach the information of the prompt pairs to the target image to be segmented by the attention mechanism, which allows for efficient learning while reducing the burden of annotation costs. Through experiments conducted on three types of microscopic cell image datasets, we confirmed that the proposed method improved the Dice score coefficient (DSC) in comparison with the conventional methods.

2.CLIP-Lung: Textual Knowledge-Guided Lung Nodule Malignancy Prediction

Authors:Yiming Lei, Zilong Li, Yan Shen, Junping Zhang, Hongming Shan

Abstract: Lung nodule malignancy prediction has been enhanced by advanced deep-learning techniques and effective tricks. Nevertheless, current methods are mainly trained with cross-entropy loss using one-hot categorical labels, which results in difficulty in distinguishing those nodules with closer progression labels. Interestingly, we observe that clinical text information annotated by radiologists provides us with discriminative knowledge to identify challenging samples. Drawing on the capability of the contrastive language-image pre-training (CLIP) model to learn generalized visual representations from text annotations, in this paper, we propose CLIP-Lung, a textual knowledge-guided framework for lung nodule malignancy prediction. First, CLIP-Lung introduces both class and attribute annotations into the training of the lung nodule classifier without any additional overheads in inference. Second, we designed a channel-wise conditional prompt (CCP) module to establish consistent relationships between learnable context prompts and specific feature maps. Third, we align image features with both class and attribute features via contrastive learning, rectifying false positives and false negatives in latent space. The experimental results on the benchmark LIDC-IDRI dataset have demonstrated the superiority of CLIP-Lung, both in classification performance and interpretability of attention maps.

3.Self-Supervised Learning from Non-Object Centric Images with a Geometric Transformation Sensitive Architecture

Authors:Taeho Kim Jong-Min Lee

Abstract: Most invariance-based self-supervised methods rely on single object-centric images (e.g., ImageNet images) for pretraining, learning invariant representations from geometric transformations. However, when images are not object-centric, the semantics of the image can be significantly altered due to geometric transformations such as random crops and multi-crops. Furthermore, the model may struggle to capture location information. For this reason, we propose a Geometric Transformation Sensitive Architecture that learns features sensitive to geometric transformation like four-fold rotation, random crop, and multi-crop. Our method encourages the student to learn sensitive features by increasing the similarity between overlapping regions not entire views. and applying rotations to the target feature map. Additionally, we use a patch correspondence loss to capture long-term dependencies. Our approach demonstrates improved performance when using non-object-centric images as pretraining data compared to other methods that learn geometric transformation-invariant representations. We surpass DINO baseline in tasks such as image classification, semantic segmentation, detection, and instance segmentation with improvements of 6.1 $Acc$, 0.6 $mIoU$, 0.4 $AP^b$, and 0.1 $AP^m$.

4.Learning How To Robustly Estimate Camera Pose in Endoscopic Videos

Authors:Michel Hayoz, Christopher Hahne, Mathias Gallardo, Daniel Candinas, Thomas Kurmann, Maximilian Allan, Raphael Sznitman

Abstract: Purpose: Surgical scene understanding plays a critical role in the technology stack of tomorrow's intervention-assisting systems in endoscopic surgeries. For this, tracking the endoscope pose is a key component, but remains challenging due to illumination conditions, deforming tissues and the breathing motion of organs. Method: We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation. Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance contributions according to the input image content. To do so, we train a Deep Declarative Network to take advantage of the expressiveness of deep-learning and the robustness of a novel geometric-based optimization approach. We validate our approach on the publicly available SCARED dataset and introduce a new in-vivo dataset, StereoMIS, which includes a wider spectrum of typically observed surgical settings. Results: Our method outperforms state-of-the-art methods on average and more importantly, in difficult scenarios where tissue deformations and breathing motion are visible. We observed that our proposed weight mappings attenuate the contribution of pixels on ambiguous regions of the images, such as deforming tissues. Conclusion: We demonstrate the effectiveness of our solution to robustly estimate the camera pose in challenging endoscopic surgical scenes. Our contributions can be used to improve related tasks like simultaneous localization and mapping (SLAM) or 3D reconstruction, therefore advancing surgical scene understanding in minimally-invasive surgery.

5.Bootstrapping Objectness from Videos by Relaxed Common Fate and Visual Grouping

Authors:Long Lian, Zhirong Wu, Stella X. Yu

Abstract: We study learning object segmentation from unlabeled videos. Humans can easily segment moving objects without knowing what they are. The Gestalt law of common fate, i.e., what move at the same speed belong together, has inspired unsupervised object discovery based on motion segmentation. However, common fate is not a reliable indicator of objectness: Parts of an articulated / deformable object may not move at the same speed, whereas shadows / reflections of an object always move with it but are not part of it. Our insight is to bootstrap objectness by first learning image features from relaxed common fate and then refining them based on visual appearance grouping within the image itself and across images statistically. Specifically, we learn an image segmenter first in the loop of approximating optical flow with constant segment flow plus small within-segment residual flow, and then by refining it for more coherent appearance and statistical figure-ground relevance. On unsupervised video object segmentation, using only ResNet and convolutional heads, our model surpasses the state-of-the-art by absolute gains of 7/9/5% on DAVIS16 / STv2 / FBMS59 respectively, demonstrating the effectiveness of our ideas. Our code is publicly available.

6.DeePLT: Personalized Lighting Facilitates by Trajectory Prediction of Recognized Residents in the Smart Home

Authors:Danial Safaei, Ali Sobhani, Ali Akbar Kiaei, Fatemeh Khorshidi, Mohammad Fakhredanesh, Cyrus Ahmady

Abstract: In recent years, the intelligence of various parts of the home has become one of the essential features of any modern home. One of these parts is the intelligence lighting system that personalizes the light for each person. This paper proposes an intelligent system based on machine learning that personalizes lighting in the instant future location of a recognized user, inferred by trajectory prediction. Our proposed system consists of the following modules: (I) human detection to detect and localize the person in each given video frame, (II) face recognition to identify the detected person, (III) human tracking to track the person in the sequence of video frames and (IV) trajectory prediction to forecast the future location of the user in the environment using Inverse Reinforcement Learning. The proposed method provides a unique profile for each person, including specifications, face images, and custom lighting settings. This profile is used in the lighting adjustment process. Unlike other methods that consider constant lighting for every person, our system can apply each 'person's desired lighting in terms of color and light intensity without direct user intervention. Therefore, the lighting is adjusted with higher speed and better efficiency. In addition, the predicted trajectory path makes the proposed system apply the desired lighting, creating more pleasant and comfortable conditions for the home residents. In the experimental results, the system applied the desired lighting in an average time of 1.4 seconds from the moment of entry, as well as a performance of 22.1mAp in human detection, 95.12% accuracy in face recognition, 93.3% MDP in human tracking, and 10.80 MinADE20, 18.55 MinFDE20, 15.8 MinADE5 and 30.50 MinFDE5 in trajectory prediction.

7.MMANet: Margin-aware Distillation and Modality-aware Regularization for Incomplete Multimodal Learning

Authors:Shicai Wei, Yang Luo, Chunbo Luo

Abstract: Multimodal learning has shown great potentials in numerous scenes and attracts increasing interest recently. However, it often encounters the problem of missing modality data and thus suffers severe performance degradation in practice. To this end, we propose a general framework called MMANet to assist incomplete multimodal learning. It consists of three components: the deployment network used for inference, the teacher network transferring comprehensive multimodal information to the deployment network, and the regularization network guiding the deployment network to balance weak modality combinations. Specifically, we propose a novel margin-aware distillation (MAD) to assist the information transfer by weighing the sample contribution with the classification uncertainty. This encourages the deployment network to focus on the samples near decision boundaries and acquire the refined inter-class margin. Besides, we design a modality-aware regularization (MAR) algorithm to mine the weak modality combinations and guide the regularization network to calculate prediction loss for them. This forces the deployment network to improve its representation ability for the weak modality combinations adaptively. Finally, extensive experiments on multimodal classification and segmentation tasks demonstrate that our MMANet outperforms the state-of-the-art significantly. Code is available at: https://github.com/shicaiwei123/MMANet

8.DeepSim-Nets: Deep Similarity Networks for Stereo Image Matching

Authors:Mohamed Ali Chebbi, Ewelina Rupnik, Marc Pierrot-Deseilligny, Paul Lopes

Abstract: We present three multi-scale similarity learning architectures, or DeepSim networks. These models learn pixel-level matching with a contrastive loss and are agnostic to the geometry of the considered scene. We establish a middle ground between hybrid and end-to-end approaches by learning to densely allocate all corresponding pixels of an epipolar pair at once. Our features are learnt on large image tiles to be expressive and capture the scene's wider context. We also demonstrate that curated sample mining can enhance the overall robustness of the predicted similarities and improve the performance on radiometrically homogeneous areas. We run experiments on aerial and satellite datasets. Our DeepSim-Nets outperform the baseline hybrid approaches and generalize better to unseen scene geometries than end-to-end methods. Our flexible architecture can be readily adopted in standard multi-resolution image matching pipelines.

9.DETRs Beat YOLOs on Real-time Object Detection

Authors:Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang, Jinman Wei, Cheng Cui, Yuning Du, Qingqing Dang, Yi Liu

Abstract: Recently, end-to-end transformer-based detectors (DETRs) have achieved remarkable performance. However, the issue of the high computational cost of DETRs has not been effectively addressed, limiting their practical application and preventing them from fully exploiting the benefits of no post-processing, such as non-maximum suppression (NMS). In this paper, we first analyze the influence of NMS in modern real-time object detectors on inference speed, and establish an end-to-end speed benchmark. To avoid the inference delay caused by NMS, we propose a Real-Time DEtection TRansformer (RT-DETR), the first real-time end-to-end object detector to our best knowledge. Specifically, we design an efficient hybrid encoder to efficiently process multi-scale features by decoupling the intra-scale interaction and cross-scale fusion, and propose IoU-aware query selection to improve the initialization of object queries. In addition, our proposed detector supports flexibly adjustment of the inference speed by using different decoder layers without the need for retraining, which facilitates the practical application of real-time object detectors. Our RT-DETR-L achieves 53.0% AP on COCO val2017 and 114 FPS on T4 GPU, while RT-DETR-X achieves 54.8% AP and 74 FPS, outperforming all YOLO detectors of the same scale in both speed and accuracy. Furthermore, our RT-DETR-R50 achieves 53.1% AP and 108 FPS, outperforming DINO-Deformable-DETR-R50 by 2.2% AP in accuracy and by about 21 times in FPS. Source code and pretrained models will be available at PaddleDetection.

10.Collaborative Feature Learning for Fine-grained Facial Forgery Detection and Segmentation

Authors:Weinan Guan, Wei Wang, Jing Dong, Bo Peng, Tieniu Tan

Abstract: Detecting maliciously falsified facial images and videos has attracted extensive attention from digital-forensics and computer-vision communities. An important topic in manipulation detection is the localization of the fake regions. Previous work related to forgery detection mostly focuses on the entire faces. However, recent forgery methods have developed to edit important facial components while maintaining others unchanged. This drives us to not only focus on the forgery detection but also fine-grained falsified region segmentation. In this paper, we propose a collaborative feature learning approach to simultaneously detect manipulation and segment the falsified components. With the collaborative manner, detection and segmentation can boost each other efficiently. To enable our study of forgery detection and segmentation, we build a facial forgery dataset consisting of both entire and partial face forgeries with their pixel-level manipulation ground-truth. Experiment results have justified the mutual promotion between forgery detection and manipulated region segmentation. The overall performance of the proposed approach is better than the state-of-the-art detection or segmentation approaches. The visualization results have shown that our proposed model always captures the artifacts on facial regions, which is more reasonable.

11.Causality-aware Visual Scene Discovery for Cross-Modal Question Reasoning

Authors:Yang Liu, Guanbin Li, Liang Lin

Abstract: Existing visual question reasoning methods usually fail to explicitly discover the inherent causal mechanism and ignore the complex event-level understanding that requires jointly modeling cross-modal event temporality and causality. In this paper, we propose an event-level visual question reasoning framework named Cross-Modal Question Reasoning (CMQR), to explicitly discover temporal causal structure and mitigate visual spurious correlation by causal intervention. To explicitly discover visual causal structure, the Visual Causality Discovery (VCD) architecture is proposed to find question-critical scene temporally and disentangle the visual spurious correlations by attention-based front-door causal intervention module named Local-Global Causal Attention Module (LGCAM). To align the fine-grained interactions between linguistic semantics and spatial-temporal representations, we build an Interactive Visual-Linguistic Transformer (IVLT) that builds the multi-modal co-occurrence interactions between visual and linguistic content. Extensive experiments on four datasets demonstrate the superiority of CMQR for discovering visual causal structures and achieving robust question reasoning.

12.Transformer-based Graph Neural Networks for Outfit Generation

Authors:Federico Becattini, Federico Maria Teotini, Alberto Del Bimbo

Abstract: Suggesting complementary clothing items to compose an outfit is a process of emerging interest, yet it involves a fine understanding of fashion trends and visual aesthetics. Previous works have mainly focused on recommendation by scoring visual appeal and representing garments as ordered sequences or as collections of pairwise-compatible items. This limits the full usage of relations among clothes. We attempt to bridge the gap between outfit recommendation and generation by leveraging a graph-based representation of items in a collection. The work carried out in this paper, tries to build a bridge between outfit recommendation and generation, by discovering new appealing outfits starting from a collection of pre-existing ones. We propose a transformer-based architecture, named TGNN, which exploits multi-headed self attention to capture relations between clothing items in a graph as a message passing step in Convolutional Graph Neural Networks. Specifically, starting from a seed, i.e.~one or more garments, outfit generation is performed by iteratively choosing the garment that is most compatible with the previously chosen ones. Extensive experimentations are conducted with two different datasets, demonstrating the capability of the model to perform seeded outfit generation as well as obtaining state of the art results on compatibility estimation tasks.

13.LLA-FLOW: A Lightweight Local Aggregation on Cost Volume for Optical Flow Estimation

Authors:Jiawei Xu, Zongqing Lu, Qingmin Liao

Abstract: Lack of texture often causes ambiguity in matching, and handling this issue is an important challenge in optical flow estimation tasks. Some methods insert stacked transformer modules that allow the network to use global information of cost volume for estimation. But the global information aggregation often incurs serious memory and time costs during training and inference, which hinders model deployment. We draw inspiration from the traditional local region constraint and design the local similarity aggregation (LSA) and the shifted local similarity aggregation (SLSA). The aggregation for cost volume is implemented with lightweight modules that act on the feature maps. Experiments on the final pass of Sintel show the lower cost required for our approach while maintaining competitive performance.

14.DETR-based Layered Clothing Segmentation and Fine-Grained Attribute Recognition

Authors:Hao Tian, Yu Cao, P. Y. Mok

Abstract: Clothing segmentation and fine-grained attribute recognition are challenging tasks at the crossing of computer vision and fashion, which segment the entire ensemble clothing instances as well as recognize detailed attributes of the clothing products from any input human images. Many new models have been developed for the tasks in recent years, nevertheless the segmentation accuracy is less than satisfactory in case of layered clothing or fashion products in different scales. In this paper, a new DEtection TRansformer (DETR) based method is proposed to segment and recognize fine-grained attributes of ensemble clothing instances with high accuracy. In this model, we propose a \textbf{multi-layered attention module} by aggregating features of different scales, determining the various scale components of a single instance, and merging them together. We train our model on the Fashionpedia dataset and demonstrate our method surpasses SOTA models in tasks of layered clothing segmentation and fine-grained attribute recognition.

15.Leveraging Multi-view Data for Improved Detection Performance: An Industrial Use Case

Authors:Faranak Shamsafar, Sunil Jaiswal, Benjamin Kelkel, Kireeti Bodduna, Klaus Illgner-Fehns

Abstract: Printed circuit boards (PCBs) are essential components of electronic devices, and ensuring their quality is crucial in their production. However, the vast variety of components and PCBs manufactured by different companies makes it challenging to adapt to production lines with speed demands. To address this challenge, we present a multi-view object detection framework that offers a fast and precise solution. We introduce a novel multi-view dataset with semi-automatic ground-truth data, which results in significant labeling resource savings. Labeling PCB boards for object detection is a challenging task due to the high density of components and the small size of the objects, which makes it difficult to identify and label them accurately. By training an object detector model with multi-view data, we achieve improved performance over single-view images. To further enhance the accuracy, we develop a multi-view inference method that aggregates results from different viewpoints. Our experiments demonstrate a 15% improvement in mAP for detecting components that range in size from 0.5 to 27.0 mm.

16.ViPLO: Vision Transformer based Pose-Conditioned Self-Loop Graph for Human-Object Interaction Detection

Authors:Jeeseung Park, Jin-Woo Park, Jong-Seok Lee

Abstract: Human-Object Interaction (HOI) detection, which localizes and infers relationships between human and objects, plays an important role in scene understanding. Although two-stage HOI detectors have advantages of high efficiency in training and inference, they suffer from lower performance than one-stage methods due to the old backbone networks and the lack of considerations for the HOI perception process of humans in the interaction classifiers. In this paper, we propose Vision Transformer based Pose-Conditioned Self-Loop Graph (ViPLO) to resolve these problems. First, we propose a novel feature extraction method suitable for the Vision Transformer backbone, called masking with overlapped area (MOA) module. The MOA module utilizes the overlapped area between each patch and the given region in the attention function, which addresses the quantization problem when using the Vision Transformer backbone. In addition, we design a graph with a pose-conditioned self-loop structure, which updates the human node encoding with local features of human joints. This allows the classifier to focus on specific human joints to effectively identify the type of interaction, which is motivated by the human perception process for HOI. As a result, ViPLO achieves the state-of-the-art results on two public benchmarks, especially obtaining a +2.07 mAP performance gain on the HICO-DET dataset. The source codes are available at https://github.com/Jeeseung-Park/ViPLO.

17.A Survey on Few-Shot Class-Incremental Learning

Authors:Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Abstract: Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta-learning based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective.

18.Tackling Face Verification Edge Cases: In-Depth Analysis and Human-Machine Fusion Approach

Authors:Martin Knoche, Gerhard Rigole

Abstract: Nowadays, face recognition systems surpass human performance on several datasets. However, there are still edge cases that the machine can't correctly classify. This paper investigates the effect of a combination of machine and human operators in the face verification task. First, we look closer at the edge cases for several state-of-the-art models to discover common datasets' challenging settings. Then, we conduct a study with 60 participants on these selected tasks with humans and provide an extensive analysis. Finally, we demonstrate that combining machine and human decisions can further improve the performance of state-of-the-art face verification systems on various benchmark datasets. Code and data are publicly available on GitHub.

19.Human Pose Estimation in Monocular Omnidirectional Top-View Images

Authors:Jingrui Yu, Tobias Scheck, Roman Seidel, Yukti Adya, Dipankar Nandi, Gangolf Hirtz

Abstract: Human pose estimation (HPE) with convolutional neural networks (CNNs) for indoor monitoring is one of the major challenges in computer vision. In contrast to HPE in perspective views, an indoor monitoring system can consist of an omnidirectional camera with a field of view of 180{\deg} to detect the pose of a person with only one sensor per room. To recognize human pose, the detection of keypoints is an essential upstream step. In our work we propose a new dataset for training and evaluation of CNNs for the task of keypoint detection in omnidirectional images. The training dataset, THEODORE+, consists of 50,000 images and is created by a 3D rendering engine, where humans are randomly walking through an indoor environment. In a dynamically created 3D scene, persons move randomly with simultaneously moving omnidirectional camera to generate synthetic RGB images and 2D and 3D ground truth. For evaluation purposes, the real-world PoseFES dataset with two scenarios and 701 frames with up to eight persons per scene was captured and annotated. We propose four training paradigms to finetune or re-train two top-down models in MMPose and two bottom-up models in CenterNet on THEODORE+. Beside a qualitative evaluation we report quantitative results. Compared to a COCO pretrained baseline, we achieve significant improvements especially for top-view scenes on the PoseFES dataset. Our datasets can be found at https://www.tu-chemnitz.de/etit/dst/forschung/comp_vision/datasets/index.php.en.

20.Applications of Deep Learning for Top-View Omnidirectional Imaging: A Survey

Authors:Jingrui Yu, Ana Cecilia Perez Grassi, Gangolf Hirtz

Abstract: A large field-of-view fisheye camera allows for capturing a large area with minimal numbers of cameras when they are mounted on a high position facing downwards. This top-view omnidirectional setup greatly reduces the work and cost for deployment compared to traditional solutions with multiple perspective cameras. In recent years, deep learning has been widely employed for vision related tasks, including for such omnidirectional settings. In this survey, we look at the application of deep learning in combination with omnidirectional top-view cameras, including the available datasets, human and object detection, human pose estimation, activity recognition and other miscellaneous applications.

21.Learning Geometry-aware Representations by Sketching

Authors:Hyundo Lee, Inwoo Hwang, Hyunsung Go, Won-Seok Choi, Kibeom Kim, Byoung-Tak Zhang

Abstract: Understanding geometric concepts, such as distance and shape, is essential for understanding the real world and also for many vision tasks. To incorporate such information into a visual representation of a scene, we propose learning to represent the scene by sketching, inspired by human behavior. Our method, coined Learning by Sketching (LBS), learns to convert an image into a set of colored strokes that explicitly incorporate the geometric information of the scene in a single inference step without requiring a sketch dataset. A sketch is then generated from the strokes where CLIP-based perceptual loss maintains a semantic similarity between the sketch and the image. We show theoretically that sketching is equivariant with respect to arbitrary affine transformations and thus provably preserves geometric information. Experimental results show that LBS substantially improves the performance of object attribute classification on the unlabeled CLEVR dataset, domain transfer between CLEVR and STL-10 datasets, and for diverse downstream tasks, confirming that LBS provides rich geometric information.

22.Intra-Batch Supervision for Panoptic Segmentation on High-Resolution Images

Authors:Daan de Geus, Gijs Dubbelman

Abstract: Unified panoptic segmentation methods are achieving state-of-the-art results on several datasets. To achieve these results on high-resolution datasets, these methods apply crop-based training. In this work, we find that, although crop-based training is advantageous in general, it also has a harmful side-effect. Specifically, it limits the ability of unified networks to discriminate between large object instances, causing them to make predictions that are confused between multiple instances. To solve this, we propose Intra-Batch Supervision (IBS), which improves a network's ability to discriminate between instances by introducing additional supervision using multiple images from the same batch. We show that, with our IBS, we successfully address the confusion problem and consistently improve the performance of unified networks. For the high-resolution Cityscapes and Mapillary Vistas datasets, we achieve improvements of up to +2.5 on the Panoptic Quality for thing classes, and even more considerable gains of up to +5.8 on both the pixel accuracy and pixel precision, which we identify as better metrics to capture the confusion problem.

23.Uncovering the Background-Induced bias in RGB based 6-DoF Object Pose Estimation

Authors:Elena Govi, Davide Sapienza, Carmelo Scribano, Tobia Poppi, Giorgia Franchini, Paola Ardòn, Micaela Verucchi, Marko Bertogna

Abstract: In recent years, there has been a growing trend of using data-driven methods in industrial settings. These kinds of methods often process video images or parts, therefore the integrity of such images is crucial. Sometimes datasets, e.g. consisting of images, can be sophisticated for various reasons. It becomes critical to understand how the manipulation of video and images can impact the effectiveness of a machine learning method. Our case study aims precisely to analyze the Linemod dataset, considered the state of the art in 6D pose estimation context. That dataset presents images accompanied by ArUco markers; it is evident that such markers will not be available in real-world contexts. We analyze how the presence of the markers affects the pose estimation accuracy, and how this bias may be mitigated through data augmentation and other methods. Our work aims to show how the presence of these markers goes to modify, in the testing phase, the effectiveness of the deep learning method used. In particular, we will demonstrate, through the tool of saliency maps, how the focus of the neural network is captured in part by these ArUco markers. Finally, a new dataset, obtained by applying geometric tools to Linemod, will be proposed in order to demonstrate our hypothesis and uncovering the bias. Our results demonstrate the potential for bias in 6DOF pose estimation networks, and suggest methods for reducing this bias when training with markers.

24.Open-World Weakly-Supervised Object Localization

Authors:Jinheng Xie, Zhaochuan Luo, Yuexiang Li, Haozhe Liu, Linlin Shen, Mike Zheng Shou

Abstract: While remarkable success has been achieved in weakly-supervised object localization (WSOL), current frameworks are not capable of locating objects of novel categories in open-world settings. To address this issue, we are the first to introduce a new weakly-supervised object localization task called OWSOL (Open-World Weakly-Supervised Object Localization). During training, all labeled data comes from known categories and, both known and novel categories exist in the unlabeled data. To handle such data, we propose a novel paradigm of contrastive representation co-learning using both labeled and unlabeled data to generate a complete G-CAM (Generalized Class Activation Map) for object localization, without the requirement of bounding box annotation. As no class label is available for the unlabelled data, we conduct clustering over the full training set and design a novel multiple semantic centroids-driven contrastive loss for representation learning. We re-organize two widely used datasets, i.e., ImageNet-1K and iNatLoc500, and propose OpenImages150 to serve as evaluation benchmarks for OWSOL. Extensive experiments demonstrate that the proposed method can surpass all baselines by a large margin. We believe that this work can shift the close-set localization towards the open-world setting and serve as a foundation for subsequent works. Code will be released at https://github.com/ryylcc/OWSOL.

25.About latent roles in forecasting players in team sports

Authors:Luca Scofano, Alessio Sampieri, Giuseppe Re, Matteo Almanza, Alessandro Panconesi, Fabio Galasso

Abstract: Forecasting players in sports has grown in popularity due to the potential for a tactical advantage and the applicability of such research to multi-agent interaction systems. Team sports contain a significant social component that influences interactions between teammates and opponents. However, it still needs to be fully exploited. In this work, we hypothesize that each participant has a specific function in each action and that role-based interaction is critical for predicting players' future moves. We create RolFor, a novel end-to-end model for Role-based Forecasting. RolFor uses a new module we developed called Ordering Neural Networks (OrderNN) to permute the order of the players such that each player is assigned to a latent role. The latent role is then modeled with a RoleGCN. Thanks to its graph representation, it provides a fully learnable adjacency matrix that captures the relationships between roles and is subsequently used to forecast the players' future trajectories. Extensive experiments on a challenging NBA basketball dataset back up the importance of roles and justify our goal of modeling them using optimizable models. When an oracle provides roles, the proposed RolFor compares favorably to the current state-of-the-art (it ranks first in terms of ADE and second in terms of FDE errors). However, training the end-to-end RolFor incurs the issues of differentiability of permutation methods, which we experimentally review. Finally, this work restates differentiable ranking as a difficult open problem and its great potential in conjunction with graph-based interaction models. Project is available at: https://www.pinlab.org/aboutlatentroles

26.MoDA: Modeling Deformable 3D Objects from Casual Videos

Authors:Chaoyue Song, Tianyi Chen, Yiwen Chen, Jiacheng Wei, Chuan Sheng Foo, Fayao Liu, Guosheng Lin

Abstract: In this paper, we focus on the challenges of modeling deformable 3D objects from casual videos. With the popularity of neural radiance fields (NeRF), many works extend it to dynamic scenes with a canonical NeRF and a deformation model that achieves 3D point transformation between the observation space and the canonical space. Recent works rely on linear blend skinning (LBS) to achieve the canonical-observation transformation. However, the linearly weighted combination of rigid transformation matrices is not guaranteed to be rigid. As a matter of fact, unexpected scale and shear factors often appear. In practice, using LBS as the deformation model can always lead to skin-collapsing artifacts for bending or twisting motions. To solve this problem, we propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation, which can perform rigid transformation without skin-collapsing artifacts. Besides, we introduce a texture filtering approach for texture rendering that effectively minimizes the impact of noisy colors outside target deformable objects. Extensive experiments on real and synthetic datasets show that our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.

27.Toward Auto-evaluation with Confidence-based Category Relation-aware Regression

Authors:Jiexin Wang, Jiahao Chen, Bing Su

Abstract: Auto-evaluation aims to automatically evaluate a trained model on any test dataset without human annotations. Most existing methods utilize global statistics of features extracted by the model as the representation of a dataset. This ignores the influence of the classification head and loses category-wise confusion information of the model. However, ratios of instances assigned to different categories together with their confidence scores reflect how many instances in which categories are difficult for the model to classify, which contain significant indicators for both overall and category-wise performances. In this paper, we propose a Confidence-based Category Relation-aware Regression ($C^2R^2$) method. $C^2R^2$ divides all instances in a meta-set into different categories according to their confidence scores and extracts the global representation from them. For each category, $C^2R^2$ encodes its local confusion relations to other categories into a local representation. The overall and category-wise performances are regressed from global and local representations, respectively. Extensive experiments show the effectiveness of our method.

28.Refusion: Enabling Large-Size Realistic Image Restoration with Latent-Space Diffusion Models

Authors:Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön

Abstract: This work aims to improve the applicability of diffusion models in realistic image restoration. Specifically, we enhance the diffusion model in several aspects such as network architecture, noise level, denoising steps, training image size, and optimizer/scheduler. We show that tuning these hyperparameters allows us to achieve better performance on both distortion and perceptual scores. We also propose a U-Net based latent diffusion model which performs diffusion in a low-resolution latent space while preserving high-resolution information from the original input for the decoding process. Compared to the previous latent-diffusion model which trains a VAE-GAN to compress the image, our proposed U-Net compression strategy is significantly more stable and can recover highly accurate images without relying on adversarial optimization. Importantly, these modifications allow us to apply diffusion models to various image restoration tasks, including real-world shadow removal, HR non-homogeneous dehazing, stereo super-resolution, and bokeh effect transformation. By simply replacing the datasets and slightly changing the noise network, our model, named Refusion, is able to deal with large-size images (e.g., 6000 x 4000 x 3 in HR dehazing) and produces good results on all the above restoration problems. Our Refusion achieves the best perceptual performance in the NTIRE 2023 Image Shadow Removal Challenge and wins 2nd place overall.

29.Interactive and Explainable Region-guided Radiology Report Generation

Authors:Tim Tanida, Philip Müller, Georgios Kaissis, Daniel Rueckert

Abstract: The automatic generation of radiology reports has the potential to assist radiologists in the time-consuming task of report writing. Existing methods generate the full report from image-level features, failing to explicitly focus on anatomical regions in the image. We propose a simple yet effective region-guided report generation model that detects anatomical regions and then describes individual, salient regions to form the final report. While previous methods generate reports without the possibility of human intervention and with limited explainability, our method opens up novel clinical use cases through additional interactive capabilities and introduces a high degree of transparency and explainability. Comprehensive experiments demonstrate our method's effectiveness in report generation, outperforming previous state-of-the-art models, and highlight its interactive capabilities. The code and checkpoints are available at https://github.com/ttanida/rgrg .

30.SDVRF: Sparse-to-Dense Voxel Region Fusion for Multi-modal 3D Object Detection

Authors:Binglu Ren, Jianqin Yin

Abstract: In the perception task of autonomous driving, multi-modal methods have become a trend due to the complementary characteristics of LiDAR point clouds and image data. However, the performance of previous methods is usually limited by the sparsity of the point cloud or the noise problem caused by the misalignment between LiDAR and the camera. To solve these two problems, we present a new concept, Voxel Region (VR), which is obtained by projecting the sparse local point clouds in each voxel dynamically. And we propose a novel fusion method, named Sparse-to-Dense Voxel Region Fusion (SDVRF). Specifically, more pixels of the image feature map inside the VR are gathered to supplement the voxel feature extracted from sparse points and achieve denser fusion. Meanwhile, different from prior methods, which project the size-fixed grids, our strategy of generating dynamic regions achieves better alignment and avoids introducing too much background noise. Furthermore, we propose a multi-scale fusion framework to extract more contextual information and capture the features of objects of different sizes. Experiments on the KITTI dataset show that our method improves the performance of different baselines, especially on classes of small size, including Pedestrian and Cyclist.

31.Predicting dynamic, motion-related changes in B0 field in the brain at a 7 T MRI using a subject-specific fine-tuned U-net

Authors:Stanislav Motyka, Paul Weiser, Beata Bachrata, Lukas Hingerl, Bernhard Strasser, Gilbert Hangel, Eva Niess, Dario Goranovic, Fabian Niess, Maxim Zaitsev, Simon Daniel Robinson, Georg Langs, Siegfried Trattnig, Wolfgang Bogner

Abstract: Subject movement during the magnetic resonance examination is inevitable and causes not only image artefacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, e.g. induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-tuned the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. We therefore conclude that it is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of magnetic resonance acquisitions without the use of navigators.

32.Human Gesture and Gait Analysis for Autism Detection

Authors:Sania Zahan, Zulqarnain Gilani, Ghulam Mubashar Hassan, Ajmal Mian

Abstract: Autism diagnosis presents a major challenge due to the vast heterogeneity of the condition and the elusive nature of early detection. Atypical gait and gesture patterns are dominant behavioral characteristics of autism and can provide crucial insights for diagnosis. Furthermore, these data can be collected efficiently in a non-intrusive way, facilitating early intervention to optimize positive outcomes. Existing research mainly focuses on associating facial and eye-gaze features with autism. However, very few studies have investigated movement and gesture patterns which can reveal subtle variations and characteristics that are specific to autism. To address this gap, we present an analysis of gesture and gait activity in videos to identify children with autism and quantify the severity of their condition by regressing autism diagnostic observation schedule scores. Our proposed architecture addresses two key factors: (1) an effective feature representation to manifest irregular gesture patterns and (2) a two-stream co-learning framework to enable a comprehensive understanding of its relation to autism from diverse perspectives without explicitly using additional data modality. Experimental results demonstrate the efficacy of utilizing gesture and gait-activity videos for autism analysis.

33.Unsupervised Image Denoising with Score Function

Authors:Yutong Xie, Mingze Yuan, Bin Dong, Quanzheng Li

Abstract: Though achieving excellent performance in some cases, current unsupervised learning methods for single image denoising usually have constraints in applications. In this paper, we propose a new approach which is more general and applicable to complicated noise models. Utilizing the property of score function, the gradient of logarithmic probability, we define a solving system for denoising. Once the score function of noisy images has been estimated, the denoised result can be obtained through the solving system. Our approach can be applied to multiple noise models, such as the mixture of multiplicative and additive noise combined with structured correlation. Experimental results show that our method is comparable when the noise model is simple, and has good performance in complicated cases where other methods are not applicable or perform poorly.

34.Progressive Visual Prompt Learning with Contrastive Feature Re-formation

Authors:Chen Xu, Haocheng Shen, Fengyuan Shi, Boheng Chen, Yixuan Liao, Xiaoxin Chen, Limin Wang

Abstract: Prompt learning has been designed as an alternative to fine-tuning for adapting Vision-language (V-L) models to the downstream tasks. Previous works mainly focus on text prompt while visual prompt works are limited for V-L models. The existing visual prompt methods endure either mediocre performance or unstable training process, indicating the difficulty of visual prompt learning. In this paper, we propose a new Progressive Visual Prompt (ProVP) structure to strengthen the interactions among prompts of different layers. More importantly, our ProVP could effectively propagate the image embeddings to deep layers and behave partially similar to an instance adaptive prompt method. To alleviate generalization deterioration, we further propose a new contrastive feature re-formation, which prevents the serious deviation of the prompted visual feature from the fixed CLIP visual feature distribution. Combining both, our method (ProVP-Ref) is evaluated on 11 image benchmark datasets and achieves 7/11 state-of-theart results on both few-shot and base-to-novel settings. To the best of our knowledge, we are the first to demonstrate the superior performance of visual prompts in V-L models to previous prompt-based methods in downstream tasks. Meanwhile, it implies that our ProVP-Ref shows the best capability to adapt and to generalize.

35.Multimodal Short Video Rumor Detection System Based on Contrastive Learning

Authors:Yuxing Yang, Junhao Zhao, Siyi Wang, Xiangyu Min, Pengchao Wang, Haizhou Wang

Abstract: With short video platforms becoming one of the important channels for news sharing, major short video platforms in China have gradually become new breeding grounds for fake news. However, it is not easy to distinguish short video rumors due to the great amount of information and features contained in short videos, as well as the serious homogenization and similarity of features among videos. In order to mitigate the spread of short video rumors, our group decides to detect short video rumors by constructing multimodal feature fusion and introducing external knowledge after considering the advantages and disadvantages of each algorithm. The ideas of detection are as follows: (1) dataset creation: to build a short video dataset with multiple features; (2) multimodal rumor detection model: firstly, we use TSN (Temporal Segment Networks) video coding model to extract video features; then, we use OCR (Optical Character Recognition) and ASR (Automatic Character Recognition) to extract video features. Recognition) and ASR (Automatic Speech Recognition) fusion to extract text, and then use the BERT model to fuse text features with video features (3) Finally, use contrast learning to achieve distinction: first crawl external knowledge, then use the vector database to achieve the introduction of external knowledge and the final structure of the classification output. Our research process is always oriented to practical needs, and the related knowledge results will play an important role in many practical scenarios such as short video rumor identification and social opinion control.

36.OVTrack: Open-Vocabulary Multiple Object Tracking

Authors:Siyuan Li, Tobias Fischer, Lei Ke, Henghui Ding, Martin Danelljan, Fisher Yu

Abstract: The ability to recognize, localize and track dynamic objects in a scene is fundamental to many real-world applications, such as self-driving and robotic systems. Yet, traditional multiple object tracking (MOT) benchmarks rely only on a few object categories that hardly represent the multitude of possible objects that are encountered in the real world. This leaves contemporary MOT methods limited to a small set of pre-defined object categories. In this paper, we address this limitation by tackling a novel task, open-vocabulary MOT, that aims to evaluate tracking beyond pre-defined training categories. We further develop OVTrack, an open-vocabulary tracker that is capable of tracking arbitrary object classes. Its design is based on two key ingredients: First, leveraging vision-language models for both classification and association via knowledge distillation; second, a data hallucination strategy for robust appearance feature learning from denoising diffusion probabilistic models. The result is an extremely data-efficient open-vocabulary tracker that sets a new state-of-the-art on the large-scale, large-vocabulary TAO benchmark, while being trained solely on static images. Project page: https://www.vis.xyz/pub/ovtrack/

37.SCANet: Self-Paced Semi-Curricular Attention Network for Non-Homogeneous Image Dehazing

Authors:Yu Guo, Yuan Gao, Ryan Wen Liu, Yuxu Lu, Jingxiang Qu, Shengfeng He, Wenqi Ren

Abstract: The presence of non-homogeneous haze can cause scene blurring, color distortion, low contrast, and other degradations that obscure texture details. Existing homogeneous dehazing methods struggle to handle the non-uniform distribution of haze in a robust manner. The crucial challenge of non-homogeneous dehazing is to effectively extract the non-uniform distribution features and reconstruct the details of hazy areas with high quality. In this paper, we propose a novel self-paced semi-curricular attention network, called SCANet, for non-homogeneous image dehazing that focuses on enhancing haze-occluded regions. Our approach consists of an attention generator network and a scene reconstruction network. We use the luminance differences of images to restrict the attention map and introduce a self-paced semi-curricular learning strategy to reduce learning ambiguity in the early stages of training. Extensive quantitative and qualitative experiments demonstrate that our SCANet outperforms many state-of-the-art methods. The code is publicly available at https://github.com/gy65896/SCANet.

38.RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection Model

Authors:Yahia Dalbah, Jean Lahoud, Hisham Cholakkal

Abstract: The performance of perception systems developed for autonomous driving vehicles has seen significant improvements over the last few years. This improvement was associated with the increasing use of LiDAR sensors and point cloud data to facilitate the task of object detection and recognition in autonomous driving. However, LiDAR and camera systems show deteriorating performances when used in unfavorable conditions like dusty and rainy weather. Radars on the other hand operate on relatively longer wavelengths which allows for much more robust measurements in these conditions. Despite that, radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception. In this work, we consider the radar object detection problem, in which the radar frequency data is the only input into the detection framework. We further investigate the challenges of using radar-only data in deep learning models. We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning. Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy. Comprehensive experiments on the CRUW radar dataset demonstrate the advantages of the proposed method. Our RadarFormer performs favorably against the state-of-the-art methods while being 2x faster during inference and requiring only one-tenth of their model parameters. The code associated with this paper is available at https://github.com/YahiDar/RadarFormer.

39.Efficient Video Action Detection with Token Dropout and Context Refinement

Authors:Lei Chen, Zhan Tong, Yibing Song, Gangshan Wu, Limin Wang

Abstract: Streaming video clips with large-scale video tokens impede vision transformers (ViTs) for efficient recognition, especially in video action detection where sufficient spatiotemporal representations are required for precise actor identification. In this work, we propose an end-to-end framework for efficient video action detection (EVAD) based on vanilla ViTs. Our EVAD consists of two specialized designs for video action detection. First, we propose a spatiotemporal token dropout from a keyframe-centric perspective. In a video clip, we maintain all tokens from its keyframe, preserve tokens relevant to actor motions from other frames, and drop out the remaining tokens in this clip. Second, we refine scene context by leveraging remaining tokens for better recognizing actor identities. The region of interest (RoI) in our action detector is expanded into temporal domain. The captured spatiotemporal actor identity representations are refined via scene context in a decoder with the attention mechanism. These two designs make our EVAD efficient while maintaining accuracy, which is validated on three benchmark datasets (i.e., AVA, UCF101-24, JHMDB). Compared to the vanilla ViT backbone, our EVAD reduces the overall GFLOPs by 43% and improves real-time inference speed by 40% with no performance degradation. Moreover, even at similar computational costs, our EVAD can improve the performance by 1.0 mAP with higher resolution inputs. Code is available at https://github.com/MCG-NJU/EVAD.

40.Learning to Render Novel Views from Wide-Baseline Stereo Pairs

Authors:Yilun Du, Cameron Smith, Ayush Tewari, Vincent Sitzmann

Abstract: We introduce a method for novel view synthesis given only a single wide-baseline stereo image pair. In this challenging regime, 3D scene points are regularly observed only once, requiring prior-based reconstruction of scene geometry and appearance. We find that existing approaches to novel view synthesis from sparse observations fail due to recovering incorrect 3D geometry and due to the high cost of differentiable rendering that precludes their scaling to large-scale training. We take a step towards resolving these shortcomings by formulating a multi-view transformer encoder, proposing an efficient, image-space epipolar line sampling scheme to assemble image features for a target ray, and a lightweight cross-attention-based renderer. Our contributions enable training of our method on a large-scale real-world dataset of indoor and outdoor scenes. We demonstrate that our method learns powerful multi-view geometry priors while reducing the rendering time. We conduct extensive comparisons on held-out test scenes across two real-world datasets, significantly outperforming prior work on novel view synthesis from sparse image observations and achieving multi-view-consistent novel view synthesis.

41.MasaCtrl: Tuning-Free Mutual Self-Attention Control for Consistent Image Synthesis and Editing

Authors:Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, Yinqiang Zheng

Abstract: Despite the success in large-scale text-to-image generation and text-conditioned image editing, existing methods still struggle to produce consistent generation and editing results. For example, generation approaches usually fail to synthesize multiple images of the same objects/characters but with different views or poses. Meanwhile, existing editing methods either fail to achieve effective complex non-rigid editing while maintaining the overall textures and identity, or require time-consuming fine-tuning to capture the image-specific appearance. In this paper, we develop MasaCtrl, a tuning-free method to achieve consistent image generation and complex non-rigid image editing simultaneously. Specifically, MasaCtrl converts existing self-attention in diffusion models into mutual self-attention, so that it can query correlated local contents and textures from source images for consistency. To further alleviate the query confusion between foreground and background, we propose a mask-guided mutual self-attention strategy, where the mask can be easily extracted from the cross-attention maps. Extensive experiments show that the proposed MasaCtrl can produce impressive results in both consistent image generation and complex non-rigid real image editing.

42.Synthetic Data from Diffusion Models Improves ImageNet Classification

Authors:Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, David J. Fleet

Abstract: Deep generative models are becoming increasingly powerful, now generating diverse high fidelity photo-realistic samples given text prompts. Have they reached the point where models of natural images can be used for generative data augmentation, helping to improve challenging discriminative tasks? We show that large-scale text-to image diffusion models can be fine-tuned to produce class conditional models with SOTA FID (1.76 at 256x256 resolution) and Inception Score (239 at 256x256). The model also yields a new SOTA in Classification Accuracy Scores (64.96 for 256x256 generative samples, improving to 69.24 for 1024x1024 samples). Augmenting the ImageNet training set with samples from the resulting models yields significant improvements in ImageNet classification accuracy over strong ResNet and Vision Transformer baselines.

43.Latent-Shift: Latent Diffusion with Temporal Shift for Efficient Text-to-Video Generation

Authors:Jie An, Songyang Zhang, Harry Yang, Sonal Gupta, Jia-Bin Huang, Jiebo Luo, Xi Yin

Abstract: We propose Latent-Shift -- an efficient text-to-video generation method based on a pretrained text-to-image generation model that consists of an autoencoder and a U-Net diffusion model. Learning a video diffusion model in the latent space is much more efficient than in the pixel space. The latter is often limited to first generating a low-resolution video followed by a sequence of frame interpolation and super-resolution models, which makes the entire pipeline very complex and computationally expensive. To extend a U-Net from image generation to video generation, prior work proposes to add additional modules like 1D temporal convolution and/or temporal attention layers. In contrast, we propose a parameter-free temporal shift module that can leverage the spatial U-Net as is for video generation. We achieve this by shifting two portions of the feature map channels forward and backward along the temporal dimension. The shifted features of the current frame thus receive the features from the previous and the subsequent frames, enabling motion learning without additional parameters. We show that Latent-Shift achieves comparable or better results while being significantly more efficient. Moreover, Latent-Shift can generate images despite being finetuned for T2V generation.

44.Towards Robust Prompts on Vision-Language Models

Authors:Jindong Gu, Ahmad Beirami, Xuezhi Wang, Alex Beutel, Philip Torr, Yao Qin

Abstract: With the advent of vision-language models (VLMs) that can perform in-context and prompt-based learning, how can we design prompting approaches that robustly generalize to distribution shift and can be used on novel classes outside the support set of the prompts? In this work, we first define two types of robustness to distribution shift on VLMs, namely, robustness on base classes (the classes included in the support set of prompts) and robustness on novel classes. Then, we study the robustness of existing in-context learning and prompt learning approaches, where we find that prompt learning performs robustly on test images from base classes, while it does not generalize well on images from novel classes. We propose robust prompt learning by integrating multiple-scale image features into the prompt, which improves both types of robustness. Comprehensive experiments are conducted to study the defined robustness on six benchmarks and show the effectiveness of our proposal.

45.DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training

Authors:Yihao Chen, Xianbiao Qi, Jianan Wang, Lei Zhang

Abstract: We propose DisCo-CLIP, a distributed memory-efficient CLIP training approach, to reduce the memory consumption of contrastive loss when training contrastive learning models. Our approach decomposes the contrastive loss and its gradient computation into two parts, one to calculate the intra-GPU gradients and the other to compute the inter-GPU gradients. According to our decomposition, only the intra-GPU gradients are computed on the current GPU, while the inter-GPU gradients are collected via all_reduce from other GPUs instead of being repeatedly computed on every GPU. In this way, we can reduce the GPU memory consumption of contrastive loss computation from $\bigO(B^2)$ to $\bigO(\frac{B^2}{N})$, where $B$ and $N$ are the batch size and the number of GPUs used for training. Such a distributed solution is mathematically equivalent to the original non-distributed contrastive loss computation, without sacrificing any computation accuracy. It is particularly efficient for large-batch CLIP training. For instance, DisCo-CLIP can enable contrastive training of a ViT-B/32 model with a batch size of 32K or 196K using 8 or 64 A100 40GB GPUs, compared with the original CLIP solution which requires 128 A100 40GB GPUs to train a ViT-B/32 model with a batch size of 32K. The code will be released at https://github.com/IDEA-Research/DisCo-CLIP

46.Neural Map Prior for Autonomous Driving

Authors:Xuan Xiong, Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, Hang Zhao

Abstract: High-definition (HD) semantic maps are crucial for autonomous vehicles navigating urban environments. Traditional offline HD maps, created through labor-intensive manual annotation processes, are both costly and incapable of accommodating timely updates. Recently, researchers have proposed inferring local maps based on online sensor observations; however, this approach is constrained by the sensor perception range and is susceptible to occlusions. In this work, we propose Neural Map Prior (NMP), a neural representation of global maps that facilitates automatic global map updates and improves local map inference performance. To incorporate the strong map prior into local map inference, we employ cross-attention that dynamically captures correlations between current features and prior features. For updating the global neural map prior, we use a learning-based fusion module to guide the network in fusing features from previous traversals. This design allows the network to capture a global neural map prior during sequential online map predictions. Experimental results on the nuScenes dataset demonstrate that our framework is highly compatible with various map segmentation and detection architectures and considerably strengthens map prediction performance, even under adverse weather conditions and across longer horizons. To the best of our knowledge, this represents the first learning-based system for constructing a global map prior.

47.Text2Performer: Text-Driven Human Video Generation

Authors:Yuming Jiang, Shuai Yang, Tong Liang Koh, Wayne Wu, Chen Change Loy, Ziwei Liu

Abstract: Text-driven content creation has evolved to be a transformative technique that revolutionizes creativity. Here we study the task of text-driven human video generation, where a video sequence is synthesized from texts describing the appearance and motions of a target performer. Compared to general text-driven video generation, human-centric video generation requires maintaining the appearance of synthesized human while performing complex motions. In this work, we present Text2Performer to generate vivid human videos with articulated motions from texts. Text2Performer has two novel designs: 1) decomposed human representation and 2) diffusion-based motion sampler. First, we decompose the VQVAE latent space into human appearance and pose representation in an unsupervised manner by utilizing the nature of human videos. In this way, the appearance is well maintained along the generated frames. Then, we propose continuous VQ-diffuser to sample a sequence of pose embeddings. Unlike existing VQ-based methods that operate in the discrete space, continuous VQ-diffuser directly outputs the continuous pose embeddings for better motion modeling. Finally, motion-aware masking strategy is designed to mask the pose embeddings spatial-temporally to enhance the temporal coherence. Moreover, to facilitate the task of text-driven human video generation, we contribute a Fashion-Text2Video dataset with manually annotated action labels and text descriptions. Extensive experiments demonstrate that Text2Performer generates high-quality human videos (up to 512x256 resolution) with diverse appearances and flexible motions.

48.Visual Instruction Tuning

Authors:Haotian Liu, Chunyuan Li, Qingyang Wu, Yong Jae Lee

Abstract: Instruction tuning large language models (LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks, but the idea is less explored in the multimodal field. In this paper, we present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data. By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language understanding.Our early experiments show that LLaVA demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make GPT-4 generated visual instruction tuning data, our model and code base publicly available.

49.BenchMD: A Benchmark for Modality-Agnostic Learning on Medical Images and Sensors

Authors:Kathryn Wantlin, Chenwei Wu, Shih-Cheng Huang, Oishi Banerjee, Farah Dadabhoy, Veeral Vipin Mehta, Ryan Wonhee Han, Fang Cao, Raja R. Narayan, Errol Colak, Adewole Adamson, Laura Heacock, Geoffrey H. Tison, Alex Tamkin, Pranav Rajpurkar

Abstract: Medical data poses a daunting challenge for AI algorithms: it exists in many different modalities, experiences frequent distribution shifts, and suffers from a scarcity of examples and labels. Recent advances, including transformers and self-supervised learning, promise a more universal approach that can be applied flexibly across these diverse conditions. To measure and drive progress in this direction, we present BenchMD: a benchmark that tests how modality-agnostic methods, including architectures and training techniques (e.g. self-supervised learning, ImageNet pretraining), perform on a diverse array of clinically-relevant medical tasks. BenchMD combines 19 publicly available datasets for 7 medical modalities, including 1D sensor data, 2D images, and 3D volumetric scans. Our benchmark reflects real-world data constraints by evaluating methods across a range of dataset sizes, including challenging few-shot settings that incentivize the use of pretraining. Finally, we evaluate performance on out-of-distribution data collected at different hospitals than the training data, representing naturally-occurring distribution shifts that frequently degrade the performance of medical AI models. Our baseline results demonstrate that no modality-agnostic technique achieves strong performance across all modalities, leaving ample room for improvement on the benchmark. Code is released at https://github.com/rajpurkarlab/BenchMD .

50.Conditional Generation of Audio from Video via Foley Analogies

Authors:Yuexi Du, Ziyang Chen, Justin Salamon, Bryan Russell, Andrew Owens

Abstract: The sound effects that designers add to videos are designed to convey a particular artistic effect and, thus, may be quite different from a scene's true sound. Inspired by the challenges of creating a soundtrack for a video that differs from its true sound, but that nonetheless matches the actions occurring on screen, we propose the problem of conditional Foley. We present the following contributions to address this problem. First, we propose a pretext task for training our model to predict sound for an input video clip using a conditional audio-visual clip sampled from another time within the same source video. Second, we propose a model for generating a soundtrack for a silent input video, given a user-supplied example that specifies what the video should "sound like". We show through human studies and automated evaluation metrics that our model successfully generates sound from video, while varying its output according to the content of a supplied example. Project site: https://xypb.github.io/CondFoleyGen/

51.Delving into Shape-aware Zero-shot Semantic Segmentation

Authors:Xinyu Liu, Beiwen Tian, Zhen Wang, Rui Wang, Kehua Sheng, Bo Zhang, Hao Zhao, Guyue Zhou

Abstract: Thanks to the impressive progress of large-scale vision-language pretraining, recent recognition models can classify arbitrary objects in a zero-shot and open-set manner, with a surprisingly high accuracy. However, translating this success to semantic segmentation is not trivial, because this dense prediction task requires not only accurate semantic understanding but also fine shape delineation and existing vision-language models are trained with image-level language descriptions. To bridge this gap, we pursue \textbf{shape-aware} zero-shot semantic segmentation in this study. Inspired by classical spectral methods in the image segmentation literature, we propose to leverage the eigen vectors of Laplacian matrices constructed with self-supervised pixel-wise features to promote shape-awareness. Despite that this simple and effective technique does not make use of the masks of seen classes at all, we demonstrate that it out-performs a state-of-the-art shape-aware formulation that aligns ground truth and predicted edges during training. We also delve into the performance gains achieved on different datasets using different backbones and draw several interesting and conclusive observations: the benefits of promoting shape-awareness highly relates to mask compactness and language embedding locality. Finally, our method sets new state-of-the-art performance for zero-shot semantic segmentation on both Pascal and COCO, with significant margins. Code and models will be accessed at https://github.com/Liuxinyv/SAZS.

52.STRAP: Structured Object Affordance Segmentation with Point Supervision

Authors:Leiyao Cui, Xiaoxue Chen, Hao Zhao, Guyue Zhou, Yixin Zhu

Abstract: With significant annotation savings, point supervision has been proven effective for numerous 2D and 3D scene understanding problems. This success is primarily attributed to the structured output space; i.e., samples with high spatial affinity tend to share the same labels. Sharing this spirit, we study affordance segmentation with point supervision, wherein the setting inherits an unexplored dual affinity-spatial affinity and label affinity. By label affinity, we refer to affordance segmentation as a multi-label prediction problem: A plate can be both holdable and containable. By spatial affinity, we refer to a universal prior that nearby pixels with similar visual features should share the same point annotation. To tackle label affinity, we devise a dense prediction network that enhances label relations by effectively densifying labels in a new domain (i.e., label co-occurrence). To address spatial affinity, we exploit a Transformer backbone for global patch interaction and a regularization loss. In experiments, we benchmark our method on the challenging CAD120 dataset, showing significant performance gains over prior methods.