arXiv daily

Computer Vision and Pattern Recognition (cs.CV)

Thu, 27 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.360VOT: A New Benchmark Dataset for Omnidirectional Visual Object Tracking

Authors:Huajian Huang, Yinzhe Xu, Yingshu Chen, Sai-Kit Yeung

Abstract: 360{\deg} images can provide an omnidirectional field of view which is important for stable and long-term scene perception. In this paper, we explore 360{\deg} images for visual object tracking and perceive new challenges caused by large distortion, stitching artifacts, and other unique attributes of 360{\deg} images. To alleviate these problems, we take advantage of novel representations of target localization, i.e., bounding field-of-view, and then introduce a general 360 tracking framework that can adopt typical trackers for omnidirectional tracking. More importantly, we propose a new large-scale omnidirectional tracking benchmark dataset, 360VOT, in order to facilitate future research. 360VOT contains 120 sequences with up to 113K high-resolution frames in equirectangular projection. The tracking targets cover 32 categories in diverse scenarios. Moreover, we provide 4 types of unbiased ground truth, including (rotated) bounding boxes and (rotated) bounding field-of-views, as well as new metrics tailored for 360{\deg} images which allow for the accurate evaluation of omnidirectional tracking performance. Finally, we extensively evaluated 20 state-of-the-art visual trackers and provided a new baseline for future comparisons. Homepage: https://360vot.hkustvgd.com

2.HTNet for micro-expression recognition

Authors:Zhifeng Wang, Kaihao Zhang, Wenhan Luo, Ramesh Sankaranarayana

Abstract: Facial expression is related to facial muscle contractions and different muscle movements correspond to different emotional states. For micro-expression recognition, the muscle movements are usually subtle, which has a negative impact on the performance of current facial emotion recognition algorithms. Most existing methods use self-attention mechanisms to capture relationships between tokens in a sequence, but they do not take into account the inherent spatial relationships between facial landmarks. This can result in sub-optimal performance on micro-expression recognition tasks.Therefore, learning to recognize facial muscle movements is a key challenge in the area of micro-expression recognition. In this paper, we propose a Hierarchical Transformer Network (HTNet) to identify critical areas of facial muscle movement. HTNet includes two major components: a transformer layer that leverages the local temporal features and an aggregation layer that extracts local and global semantical facial features. Specifically, HTNet divides the face into four different facial areas: left lip area, left eye area, right eye area and right lip area. The transformer layer is used to focus on representing local minor muscle movement with local self-attention in each area. The aggregation layer is used to learn the interactions between eye areas and lip areas. The experiments on four publicly available micro-expression datasets show that the proposed approach outperforms previous methods by a large margin. The codes and models are available at: \url{https://github.com/wangzhifengharrison/HTNet}

3.EqGAN: Feature Equalization Fusion for Few-shot Image Generation

Authors:Yingbo Zhou, Zhihao Yue, Yutong Ye, Pengyu Zhang, Xian Wei, Mingsong Chen

Abstract: Due to the absence of fine structure and texture information, existing fusion-based few-shot image generation methods suffer from unsatisfactory generation quality and diversity. To address this problem, we propose a novel feature Equalization fusion Generative Adversarial Network (EqGAN) for few-shot image generation. Unlike existing fusion strategies that rely on either deep features or local representations, we design two separate branches to fuse structures and textures by disentangling encoded features into shallow and deep contents. To refine image contents at all feature levels, we equalize the fused structure and texture semantics at different scales and supplement the decoder with richer information by skip connections. Since the fused structures and textures may be inconsistent with each other, we devise a consistent equalization loss between the equalized features and the intermediate output of the decoder to further align the semantics. Comprehensive experiments on three public datasets demonstrate that, EqGAN not only significantly improves generation performance with FID score (by up to 32.7%) and LPIPS score (by up to 4.19%), but also outperforms the state-of-the-arts in terms of accuracy (by up to 1.97%) for downstream classification tasks.

4.Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models

Authors:Xin Yuan, Linjie Li, Jianfeng Wang, Zhengyuan Yang, Kevin Lin, Zicheng Liu, Lijuan Wang

Abstract: In this paper, we study the denoising diffusion probabilistic model (DDPM) in wavelet space, instead of pixel space, for visual synthesis. Considering the wavelet transform represents the image in spatial and frequency domains, we carefully design a novel architecture SFUNet to effectively capture the correlation for both domains. Specifically, in the standard denoising U-Net for pixel data, we supplement the 2D convolutions and spatial-only attention layers with our spatial frequency-aware convolution and attention modules to jointly model the complementary information from spatial and frequency domains in wavelet data. Our new architecture can be used as a drop-in replacement to the pixel-based network and is compatible with the vanilla DDPM training process. By explicitly modeling the wavelet signals, we find our model is able to generate images with higher quality on CIFAR-10, FFHQ, LSUN-Bedroom, and LSUN-Church datasets, than the pixel-based counterpart.

5.LLDiffusion: Learning Degradation Representations in Diffusion Models for Low-Light Image Enhancement

Authors:Tao Wang, Kaihao Zhang, Ziqian Shao, Wenhan Luo, Bjorn Stenger, Tae-Kyun Kim, Wei Liu, Hongdong Li

Abstract: Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data. However, these methods often overlook the importance of considering degradation representations, which can lead to sub-optimal outcomes. In this paper, we address this limitation by proposing a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process, resulting in improved image enhancement. Our proposed degradation-aware learning scheme is based on the understanding that degradation representations play a crucial role in accurately modeling and capturing the specific degradation patterns present in low-light images. To this end, First, a joint learning framework for both image generation and image enhancement is presented to learn the degradation representations. Second, to leverage the learned degradation representations, we develop a Low-Light Diffusion model (LLDiffusion) with a well-designed dynamic diffusion module. This module takes into account both the color map and the latent degradation representations to guide the diffusion process. By incorporating these conditioning factors, the proposed LLDiffusion can effectively enhance low-light images, considering both the inherent degradation patterns and the desired color fidelity. Finally, we evaluate our proposed method on several well-known benchmark datasets, including synthetic and real-world unpaired datasets. Extensive experiments on public benchmarks demonstrate that our LLDiffusion outperforms state-of-the-art LLIE methods both quantitatively and qualitatively. The source code and pre-trained models are available at https://github.com/TaoWangzj/LLDiffusion.

6.Unified Adversarial Patch for Visible-Infrared Cross-modal Attacks in the Physical World

Authors:Xingxing Wei, Yao Huang, Yitong Sun, Jie Yu

Abstract: Physical adversarial attacks have put a severe threat to DNN-based object detectors. To enhance security, a combination of visible and infrared sensors is deployed in various scenarios, which has proven effective in disabling existing single-modal physical attacks. To further demonstrate the potential risks in such cases, we design a unified adversarial patch that can perform cross-modal physical attacks, achieving evasion in both modalities simultaneously with a single patch. Given the different imaging mechanisms of visible and infrared sensors, our work manipulates patches' shape features, which can be captured in different modalities when they undergo changes. To deal with challenges, we propose a novel boundary-limited shape optimization approach that aims to achieve compact and smooth shapes for the adversarial patch, making it easy to implement in the physical world. And a score-aware iterative evaluation method is also introduced to balance the fooling degree between visible and infrared detectors during optimization, which guides the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. Furthermore, we propose an Affine-Transformation-based enhancement strategy that makes the learnable shape robust to various angles, thus mitigating the issue of shape deformation caused by different shooting angles in the real world. Our method is evaluated against several state-of-the-art object detectors, achieving an Attack Success Rate (ASR) of over 80%. We also demonstrate the effectiveness of our approach in physical-world scenarios under various settings, including different angles, distances, postures, and scenes for both visible and infrared sensors.

7.MIM-OOD: Generative Masked Image Modelling for Out-of-Distribution Detection in Medical Images

Authors:Sergio {Naval Marimont}, Vasilis Siomos, Giacomo Tarroni

Abstract: Unsupervised Out-of-Distribution (OOD) detection consists in identifying anomalous regions in images leveraging only models trained on images of healthy anatomy. An established approach is to tokenize images and model the distribution of tokens with Auto-Regressive (AR) models. AR models are used to 1) identify anomalous tokens and 2) in-paint anomalous representations with in-distribution tokens. However, AR models are slow at inference time and prone to error accumulation issues which negatively affect OOD detection performance. Our novel method, MIM-OOD, overcomes both speed and error accumulation issues by replacing the AR model with two task-specific networks: 1) a transformer optimized to identify anomalous tokens and 2) a transformer optimized to in-paint anomalous tokens using masked image modelling (MIM). Our experiments with brain MRI anomalies show that MIM-OOD substantially outperforms AR models (DICE 0.458 vs 0.301) while achieving a nearly 25x speedup (9.5s vs 244s).

8.High Dynamic Range Imaging via Visual Attention Modules

Authors:Ali Reza Omrani, Davide Moroni

Abstract: Thanks to High Dynamic Range (HDR) imaging methods, the scope of photography has seen profound changes recently. To be more specific, such methods try to reconstruct the lost luminosity of the real world caused by the limitation of regular cameras from the Low Dynamic Range (LDR) images. Additionally, although the State-Of-The-Art methods in this topic perform well, they mainly concentrate on combining different exposures and have less attention to extracting the informative parts of the images. Thus, this paper aims to introduce a new model capable of incorporating information from the most visible areas of each image extracted by a visual attention module (VAM), which is a result of a segmentation strategy. In particular, the model, based on a deep learning architecture, utilizes the extracted areas to produce the final HDR image. The results demonstrate that our method outperformed most of the State-Of-The-Art algorithms.

9.Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via Optimization Trajectory Distillation

Authors:Jianan Fan, Dongnan Liu, Hang Chang, Heng Huang, Mei Chen, Weidong Cai

Abstract: The success of automated medical image analysis depends on large-scale and expert-annotated training sets. Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection. However, they generally operate under the closed-set adaptation setting assuming an identical label set between the source and target domains, which is over-restrictive in clinical practice where new classes commonly exist across datasets due to taxonomic inconsistency. While several methods have been presented to tackle both domain shifts and incoherent label sets, none of them take into account the common characteristics of the two issues and consider the learning dynamics along network training. In this work, we propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective. It exploits the low-rank nature of gradient space and devises a dual-stream distillation algorithm to regularize the learning dynamics of insufficiently annotated domain and classes with the external guidance obtained from reliable sources. Our approach resolves the issue of inadequate navigation along network optimization, which is the major obstacle in the taxonomy adaptive cross-domain adaptation scenario. We evaluate the proposed method extensively on several tasks towards various endpoints with clinical and open-world significance. The results demonstrate its effectiveness and improvements over previous methods.

10.Pre-training Vision Transformers with Very Limited Synthesized Images

Authors:Ryo Nakamura1, Hirokatsu Kataoka, Sora Takashima, Edgar Josafat Martinez Noriega, Rio Yokota, Nakamasa Inoue

Abstract: Formula-driven supervised learning (FDSL) is a pre-training method that relies on synthetic images generated from mathematical formulae such as fractals. Prior work on FDSL has shown that pre-training vision transformers on such synthetic datasets can yield competitive accuracy on a wide range of downstream tasks. These synthetic images are categorized according to the parameters in the mathematical formula that generate them. In the present work, we hypothesize that the process for generating different instances for the same category in FDSL, can be viewed as a form of data augmentation. We validate this hypothesis by replacing the instances with data augmentation, which means we only need a single image per category. Our experiments shows that this one-instance fractal database (OFDB) performs better than the original dataset where instances were explicitly generated. We further scale up OFDB to 21,000 categories and show that it matches, or even surpasses, the model pre-trained on ImageNet-21k in ImageNet-1k fine-tuning. The number of images in OFDB is 21k, whereas ImageNet-21k has 14M. This opens new possibilities for pre-training vision transformers with much smaller datasets.

11.GaitMorph: Transforming Gait by Optimally Transporting Discrete Codes

Authors:Adrian Cosma, Emilian Radoi

Abstract: Gait, the manner of walking, has been proven to be a reliable biometric with uses in surveillance, marketing and security. A promising new direction for the field is training gait recognition systems without explicit human annotations, through self-supervised learning approaches. Such methods are heavily reliant on strong augmentations for the same walking sequence to induce more data variability and to simulate additional walking variations. Current data augmentation schemes are heuristic and cannot provide the necessary data variation as they are only able to provide simple temporal and spatial distortions. In this work, we propose GaitMorph, a novel method to modify the walking variation for an input gait sequence. Our method entails the training of a high-compression model for gait skeleton sequences that leverages unlabelled data to construct a discrete and interpretable latent space, which preserves identity-related features. Furthermore, we propose a method based on optimal transport theory to learn latent transport maps on the discrete codebook that morph gait sequences between variations. We perform extensive experiments and show that our method is suitable to synthesize additional views for an input sequence.

12.EFLNet: Enhancing Feature Learning for Infrared Small Target Detection

Authors:Bo Yang, Xinyu Zhang, Jiahao Zhu, Jian Zhang, Dongjian Tian, Jun Luo, Mingliang Zhou, Yangjun Pi

Abstract: Single-frame infrared small target detection is considered to be a challenging task, due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small targets, and small target information is easy to lose in the high-level semantic layer. In this paper, we propose an enhancing feature learning network (EFLNet) based on YOLOv7 framework to solve these problems. First, we notice that there is an extremely imbalance between the target and the background in the infrared image, which makes the model pay more attention to the background features, resulting in missed detection. To address this problem, we propose a new adaptive threshold focal loss function that adjusts the loss weight automatically, compelling the model to allocate greater attention to target features. Second, we introduce the normalized Gaussian Wasserstein distance to alleviate the difficulty of model convergence caused by the extreme sensitivity of the bounding box regression to infrared small targets. Finally, we incorporate a dynamic head mechanism into the network to enable adaptive learning of the relative importance of each semantic layer. Experimental results demonstrate our method can achieve better performance in the detection performance of infrared small targets compared to state-of-the-art deep-learning based methods.

13.vox2vec: A Framework for Self-supervised Contrastive Learning of Voxel-level Representations in Medical Images

Authors:Mikhail Goncharov, Vera Soboleva, Anvar Kurmukov, Maxim Pisov, Mikhail Belyaev

Abstract: This paper introduces vox2vec - a contrastive method for self-supervised learning (SSL) of voxel-level representations. vox2vec representations are modeled by a Feature Pyramid Network (FPN): a voxel representation is a concatenation of the corresponding feature vectors from different pyramid levels. The FPN is pre-trained to produce similar representations for the same voxel in different augmented contexts and distinctive representations for different voxels. This results in unified multi-scale representations that capture both global semantics (e.g., body part) and local semantics (e.g., different small organs or healthy versus tumor tissue). We use vox2vec to pre-train a FPN on more than 6500 publicly available computed tomography images. We evaluate the pre-trained representations by attaching simple heads on top of them and training the resulting models for 22 segmentation tasks. We show that vox2vec outperforms existing medical imaging SSL techniques in three evaluation setups: linear and non-linear probing and end-to-end fine-tuning. Moreover, a non-linear head trained on top of the frozen vox2vec representations achieves competitive performance with the FPN trained from scratch while having 50 times fewer trainable parameters. The code is available at https://github.com/mishgon/vox2vec .

14.P2C: Self-Supervised Point Cloud Completion from Single Partial Clouds

Authors:Ruikai Cui, Shi Qiu, Saeed Anwar, Jiawei Liu, Chaoyue Xing, Jing Zhang, Nick Barnes

Abstract: Point cloud completion aims to recover the complete shape based on a partial observation. Existing methods require either complete point clouds or multiple partial observations of the same object for learning. In contrast to previous approaches, we present Partial2Complete (P2C), the first self-supervised framework that completes point cloud objects using training samples consisting of only a single incomplete point cloud per object. Specifically, our framework groups incomplete point clouds into local patches as input and predicts masked patches by learning prior information from different partial objects. We also propose Region-Aware Chamfer Distance to regularize shape mismatch without limiting completion capability, and devise the Normal Consistency Constraint to incorporate a local planarity assumption, encouraging the recovered shape surface to be continuous and complete. In this way, P2C no longer needs multiple observations or complete point clouds as ground truth. Instead, structural cues are learned from a category-specific dataset to complete partial point clouds of objects. We demonstrate the effectiveness of our approach on both synthetic ShapeNet data and real-world ScanNet data, showing that P2C produces comparable results to methods trained with complete shapes, and outperforms methods learned with multiple partial observations. Code is available at https://github.com/CuiRuikai/Partial2Complete.

15.Test Time Adaptation for Blind Image Quality Assessment

Authors:Subhadeep Roy, Shankhanil Mitra, Soma Biswas, Rajiv Soundararajan

Abstract: While the design of blind image quality assessment (IQA) algorithms has improved significantly, the distribution shift between the training and testing scenarios often leads to a poor performance of these methods at inference time. This motivates the study of test time adaptation (TTA) techniques to improve their performance at inference time. Existing auxiliary tasks and loss functions used for TTA may not be relevant for quality-aware adaptation of the pre-trained model. In this work, we introduce two novel quality-relevant auxiliary tasks at the batch and sample levels to enable TTA for blind IQA. In particular, we introduce a group contrastive loss at the batch level and a relative rank loss at the sample level to make the model quality aware and adapt to the target data. Our experiments reveal that even using a small batch of images from the test distribution helps achieve significant improvement in performance by updating the batch normalization statistics of the source model.

16.Semantic Image Completion and Enhancement using GANs

Authors:Priyansh Saxena, Raahat Gupta, Akshat Maheshwari, Saumil Maheshwari

Abstract: Semantic inpainting or image completion alludes to the task of inferring arbitrary large missing regions in images based on image semantics. Since the prediction of image pixels requires an indication of high-level context, this makes it significantly tougher than image completion, which is often more concerned with correcting data corruption and removing entire objects from the input image. On the other hand, image enhancement attempts to eliminate unwanted noise and blur from the image, along with sustaining most of the image details. Efficient image completion and enhancement model should be able to recover the corrupted and masked regions in images and then refine the image further to increase the quality of the output image. Generative Adversarial Networks (GAN), have turned out to be helpful in picture completion tasks. In this chapter, we will discuss the underlying GAN architecture and how they can be used used for image completion tasks.

17.Exploring Annotation-free Image Captioning with Retrieval-augmented Pseudo Sentence Generation

Authors:Zhiyuan Li, Dongnan Liu, Heng Wang, Chaoyi Zhang, Weidong Cai

Abstract: Training an image captioner without annotated image-sentence pairs has gained traction in recent years. Previous approaches can be categorized into two strategies: crawling sentences from mismatching corpora and aligning them with the given images as pseudo annotations, or pre-training the captioner using external image-text pairs. However, the aligning setting seems to reach its performance limit due to the quality problem of pairs, and pre-training requires significant computational resources. To address these challenges, we propose a new strategy ``LPM + retrieval-augmented learning" where the prior knowledge from large pre-trained models (LPMs) is leveraged as supervision, and a retrieval process is integrated to further reinforce its effectiveness. Specifically, we introduce Retrieval-augmented Pseudo Sentence Generation (RaPSG), which adopts an efficient approach to retrieve highly relevant short region descriptions from the mismatching corpora and use them to generate a variety of pseudo sentences with distinct representations as well as high quality via LPMs. In addition, a fluency filter and a CLIP-guided training objective are further introduced to facilitate model optimization. Experimental results demonstrate that our method surpasses the SOTA pre-training model (Flamingo3B) by achieving a CIDEr score of 78.1 (+5.1) while utilizing only 0.3% of its trainable parameters (1.3B VS 33M). Importantly, our approach eliminates the need of computationally expensive pre-training processes on external datasets (e.g., the requirement of 312M image-text pairs for Flamingo3B). We further show that with a simple extension, the generated pseudo sentences can be deployed as weak supervision to boost the 1% semi-supervised image caption benchmark up to 93.4 CIDEr score (+8.9) which showcases the versatility and effectiveness of our approach.

18.Gloss-free Sign Language Translation: Improving from Visual-Language Pretraining

Authors:Benjia Zhou, Zhigang Chen, Albert Clapés, Jun Wan, Yanyan Liang, Sergio Escalera, Zhen Lei, Du Zhang

Abstract: Sign Language Translation (SLT) is a challenging task due to its cross-domain nature, involving the translation of visual-gestural language to text. Many previous methods employ an intermediate representation, i.e., gloss sequences, to facilitate SLT, thus transforming it into a two-stage task of sign language recognition (SLR) followed by sign language translation (SLT). However, the scarcity of gloss-annotated sign language data, combined with the information bottleneck in the mid-level gloss representation, has hindered the further development of the SLT task. To address this challenge, we propose a novel Gloss-Free SLT based on Visual-Language Pretraining (GFSLT-VLP), which improves SLT by inheriting language-oriented prior knowledge from pre-trained models, without any gloss annotation assistance. Our approach involves two stages: (i) integrating Contrastive Language-Image Pre-training (CLIP) with masked self-supervised learning to create pre-tasks that bridge the semantic gap between visual and textual representations and restore masked sentences, and (ii) constructing an end-to-end architecture with an encoder-decoder-like structure that inherits the parameters of the pre-trained Visual Encoder and Text Decoder from the first stage. The seamless combination of these novel designs forms a robust sign language representation and significantly improves gloss-free sign language translation. In particular, we have achieved unprecedented improvements in terms of BLEU-4 score on the PHOENIX14T dataset (>+5) and the CSL-Daily dataset (>+3) compared to state-of-the-art gloss-free SLT methods. Furthermore, our approach also achieves competitive results on the PHOENIX14T dataset when compared with most of the gloss-based methods. Our code is available at https://github.com/zhoubenjia/GFSLT-VLP.

19.Learning Full-Head 3D GANs from a Single-View Portrait Dataset

Authors:Yiqian Wu, Hao Xu, Xiangjun Tang, Hongbo Fu, Xiaogang Jin

Abstract: 33D-aware face generators are commonly trained on 2D real-life face image datasets. Nevertheless, existing facial recognition methods often struggle to extract face data captured from various camera angles. Furthermore, in-the-wild images with diverse body poses introduce a high-dimensional challenge for 3D-aware generators, making it difficult to utilize data that contains complete neck and shoulder regions. Consequently, these face image datasets often contain only near-frontal face data, which poses challenges for 3D-aware face generators to construct \textit{full-head} 3D portraits. To this end, we first create the dataset {$\it{360}^{\circ}$}-\textit{Portrait}-\textit{HQ} (\textit{$\it{360}^{\circ}$PHQ}), which consists of high-quality single-view real portraits annotated with a variety of camera parameters {(the yaw angles span the entire $360^{\circ}$ range)} and body poses. We then propose \textit{3DPortraitGAN}, the first 3D-aware full-head portrait generator that learns a canonical 3D avatar distribution from the body-pose-various \textit{$\it{360}^{\circ}$PHQ} dataset with body pose self-learning. Our model can generate view-consistent portrait images from all camera angles (${360}^{\circ}$) with a full-head 3D representation. We incorporate a mesh-guided deformation field into volumetric rendering to produce deformed results to generate portrait images that conform to the body pose distribution of the dataset using our canonical generator. We integrate two pose predictors into our framework to predict more accurate body poses to address the issue of inaccurately estimated body poses in our dataset. Our experiments show that the proposed framework can generate view-consistent, realistic portrait images with complete geometry from all camera angles and accurately predict portrait body pose.

20.pCTFusion: Point Convolution-Transformer Fusion with Semantic Aware Loss for Outdoor LiDAR Point Cloud Segmentation

Authors:Abhishek Kuriyal, Vaibhav Kumar, Bharat Lohani

Abstract: LiDAR-generated point clouds are crucial for perceiving outdoor environments. The segmentation of point clouds is also essential for many applications. Previous research has focused on using self-attention and convolution (local attention) mechanisms individually in semantic segmentation architectures. However, there is limited work on combining the learned representations of these attention mechanisms to improve performance. Additionally, existing research that combines convolution with self-attention relies on global attention, which is not practical for processing large point clouds. To address these challenges, this study proposes a new architecture, pCTFusion, which combines kernel-based convolutions and self-attention mechanisms for better feature learning and capturing local and global dependencies in segmentation. The proposed architecture employs two types of self-attention mechanisms, local and global, based on the hierarchical positions of the encoder blocks. Furthermore, the existing loss functions do not consider the semantic and position-wise importance of the points, resulting in reduced accuracy, particularly at sharp class boundaries. To overcome this, the study models a novel attention-based loss function called Pointwise Geometric Anisotropy (PGA), which assigns weights based on the semantic distribution of points in a neighborhood. The proposed architecture is evaluated on SemanticKITTI outdoor dataset and showed a 5-7% improvement in performance compared to the state-of-the-art architectures. The results are particularly encouraging for minor classes, often misclassified due to class imbalance, lack of space, and neighbor-aware feature encoding. These developed methods can be leveraged for the segmentation of complex datasets and can drive real-world applications of LiDAR point cloud.

21.Contrastive Knowledge Amalgamation for Unsupervised Image Classification

Authors:Shangde Gao, Yichao Fu, Ke Liu, Yuqiang Han

Abstract: Knowledge amalgamation (KA) aims to learn a compact student model to handle the joint objective from multiple teacher models that are are specialized for their own tasks respectively. Current methods focus on coarsely aligning teachers and students in the common representation space, making it difficult for the student to learn the proper decision boundaries from a set of heterogeneous teachers. Besides, the KL divergence in previous works only minimizes the probability distribution difference between teachers and the student, ignoring the intrinsic characteristics of teachers. Therefore, we propose a novel Contrastive Knowledge Amalgamation (CKA) framework, which introduces contrastive losses and an alignment loss to achieve intra-class cohesion and inter-class separation.Contrastive losses intra- and inter- models are designed to widen the distance between representations of different classes. The alignment loss is introduced to minimize the sample-level distribution differences of teacher-student models in the common representation space.Furthermore, the student learns heterogeneous unsupervised classification tasks through soft targets efficiently and flexibly in the task-level amalgamation. Extensive experiments on benchmarks demonstrate the generalization capability of CKA in the amalgamation of specific task as well as multiple tasks. Comprehensive ablation studies provide a further insight into our CKA.

22.Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning

Authors:Junwen He, Yifan Wang, Lijun Wang, Huchuan Lu, Jun-Yan He, Jin-Peng Lan, Bin Luo, Yifeng Geng, Xuansong Xie

Abstract: Depth-aware panoptic segmentation is an emerging topic in computer vision which combines semantic and geometric understanding for more robust scene interpretation. Recent works pursue unified frameworks to tackle this challenge but mostly still treat it as two individual learning tasks, which limits their potential for exploring cross-domain information. We propose a deeply unified framework for depth-aware panoptic segmentation, which performs joint segmentation and depth estimation both in a per-segment manner with identical object queries. To narrow the gap between the two tasks, we further design a geometric query enhancement method, which is able to integrate scene geometry into object queries using latent representations. In addition, we propose a bi-directional guidance learning approach to facilitate cross-task feature learning by taking advantage of their mutual relations. Our method sets the new state of the art for depth-aware panoptic segmentation on both Cityscapes-DVPS and SemKITTI-DVPS datasets. Moreover, our guidance learning approach is shown to deliver performance improvement even under incomplete supervision labels.

23.Simplified Concrete Dropout -- Improving the Generation of Attribution Masks for Fine-grained Classification

Authors:Dimitri Korsch, Maha Shadaydeh, Joachim Denzler

Abstract: Fine-grained classification is a particular case of a classification problem, aiming to classify objects that share the visual appearance and can only be distinguished by subtle differences. Fine-grained classification models are often deployed to determine animal species or individuals in automated animal monitoring systems. Precise visual explanations of the model's decision are crucial to analyze systematic errors. Attention- or gradient-based methods are commonly used to identify regions in the image that contribute the most to the classification decision. These methods deliver either too coarse or too noisy explanations, unsuitable for identifying subtle visual differences reliably. However, perturbation-based methods can precisely identify pixels causally responsible for the classification result. Fill-in of the dropout (FIDO) algorithm is one of those methods. It utilizes the concrete dropout (CD) to sample a set of attribution masks and updates the sampling parameters based on the output of the classification model. A known problem of the algorithm is a high variance in the gradient estimates, which the authors have mitigated until now by mini-batch updates of the sampling parameters. This paper presents a solution to circumvent these computational instabilities by simplifying the CD sampling and reducing reliance on large mini-batch sizes. First, it allows estimating the parameters with smaller mini-batch sizes without losing the quality of the estimates but with a reduced computational effort. Furthermore, our solution produces finer and more coherent attribution masks. Finally, we use the resulting attribution masks to improve the classification performance of a trained model without additional fine-tuning of the model.

24.Comparative Evaluation of Digital and Analog Chest Radiographs to Identify Tuberculosis using Deep Learning Model

Authors:Subhankar Chattoraj, Bhargava Reddy, Manoj Tadepalli, Preetham Putha

Abstract: Purpose:Chest X-ray (CXR) is an essential tool and one of the most prescribed imaging to detect pulmonary abnormalities, with a yearly estimate of over 2 billion imaging performed worldwide. However, the accurate and timely diagnosis of TB remains an unmet goal. The prevalence of TB is highest in low-middle-income countries, and the requirement of a portable, automated, and reliable solution is required. In this study, we compared the performance of DL-based devices on digital and analog CXR. The evaluated DL-based device can be used in resource-constraint settings. Methods: A total of 10,000 CXR DICOMs(.dcm) and printed photos of the films acquired with three different cellular phones - Samsung S8, iPhone 8, and iPhone XS along with their radiological report were retrospectively collected from various sites across India from April 2020 to March 2021. Results: 10,000 chest X-rays were utilized to evaluate the DL-based device in identifying radiological signs of TB. The AUC of qXR for detecting signs of tuberculosis on the original DICOMs dataset was 0.928 with a sensitivity of 0.841 at a specificity of 0.806. At an optimal threshold, the difference in the AUC of three cellular smartphones with the original DICOMs is 0.024 (2.55%), 0.048 (5.10%), and 0.038 (1.91%). The minimum difference demonstrates the robustness of the DL-based device in identifying radiological signs of TB in both digital and analog CXR.

25.IML-ViT: Image Manipulation Localization by Vision Transformer

Authors:Xiaochen Ma, Bo Du, Xianggen Liu, Ahmed Y. Al Hammadi, Jizhe Zhou

Abstract: Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between the manipulated and authentic regions, which needs to compare differences between these two areas explicitly. With the self-attention mechanism, naturally, the Transformer is the best candidate. Besides, artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border. Therefore, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision. We term this simple but effective ViT paradigm as the IML-ViT, which has great potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods. Code and models are available at \url{https://github.com/SunnyHaze/IML-ViT}

26.Sample Less, Learn More: Efficient Action Recognition via Frame Feature Restoration

Authors:Harry Cheng, Yangyang Guo, Liqiang Nie, Zhiyong Cheng, Mohan Kankanhalli

Abstract: Training an effective video action recognition model poses significant computational challenges, particularly under limited resource budgets. Current methods primarily aim to either reduce model size or utilize pre-trained models, limiting their adaptability to various backbone architectures. This paper investigates the issue of over-sampled frames, a prevalent problem in many approaches yet it has received relatively little attention. Despite the use of fewer frames being a potential solution, this approach often results in a substantial decline in performance. To address this issue, we propose a novel method to restore the intermediate features for two sparsely sampled and adjacent video frames. This feature restoration technique brings a negligible increase in computational requirements compared to resource-intensive image encoders, such as ViT. To evaluate the effectiveness of our method, we conduct extensive experiments on four public datasets, including Kinetics-400, ActivityNet, UCF-101, and HMDB-51. With the integration of our method, the efficiency of three commonly used baselines has been improved by over 50%, with a mere 0.5% reduction in recognition accuracy. In addition, our method also surprisingly helps improve the generalization ability of the models under zero-shot settings.

27.Weakly Supervised Multi-Modal 3D Human Body Pose Estimation for Autonomous Driving

Authors:Peter Bauer, Arij Bouazizi, Ulrich Kressel, Fabian B. Flohr

Abstract: Accurate 3D human pose estimation (3D HPE) is crucial for enabling autonomous vehicles (AVs) to make informed decisions and respond proactively in critical road scenarios. Promising results of 3D HPE have been gained in several domains such as human-computer interaction, robotics, sports and medical analytics, often based on data collected in well-controlled laboratory environments. Nevertheless, the transfer of 3D HPE methods to AVs has received limited research attention, due to the challenges posed by obtaining accurate 3D pose annotations and the limited suitability of data from other domains. We present a simple yet efficient weakly supervised approach for 3D HPE in the AV context by employing a high-level sensor fusion between camera and LiDAR data. The weakly supervised setting enables training on the target datasets without any 2D/3D keypoint labels by using an off-the-shelf 2D joint extractor and pseudo labels generated from LiDAR to image projections. Our approach outperforms state-of-the-art results by up to $\sim$ 13% on the Waymo Open Dataset in the weakly supervised setting and achieves state-of-the-art results in the supervised setting.

28.Mixture of Self-Supervised Learning

Authors:Aristo Renaldo Ruslim, Novanto Yudistira, Budi Darma Setiawan

Abstract: Self-supervised learning is popular method because of its ability to learn features in images without using its labels and is able to overcome limited labeled datasets used in supervised learning. Self-supervised learning works by using a pretext task which will be trained on the model before being applied to a specific task. There are some examples of pretext tasks used in self-supervised learning in the field of image recognition, namely rotation prediction, solving jigsaw puzzles, and predicting relative positions on image. Previous studies have only used one type of transformation as a pretext task. This raises the question of how it affects if more than one pretext task is used and to use a gating network to combine all pretext tasks. Therefore, we propose the Gated Self-Supervised Learning method to improve image classification which use more than one transformation as pretext task and uses the Mixture of Expert architecture as a gating network in combining each pretext task so that the model automatically can study and focus more on the most useful augmentations for classification. We test performance of the proposed method in several scenarios, namely CIFAR imbalance dataset classification, adversarial perturbations, Tiny-Imagenet dataset classification, and semi-supervised learning. Moreover, there are Grad-CAM and T-SNE analysis that are used to see the proposed method for identifying important features that influence image classification and representing data for each class and separating different classes properly. Our code is in https://github.com/aristorenaldo/G-SSL

29.Text-guided Foundation Model Adaptation for Pathological Image Classification

Authors:Yunkun Zhang, Jin Gao, Mu Zhou, Xiaosong Wang, Yu Qiao, Shaoting Zhang, Dequan Wang

Abstract: The recent surge of foundation models in computer vision and natural language processing opens up perspectives in utilizing multi-modal clinical data to train large models with strong generalizability. Yet pathological image datasets often lack biomedical text annotation and enrichment. Guiding data-efficient image diagnosis from the use of biomedical text knowledge becomes a substantial interest. In this paper, we propose to Connect Image and Text Embeddings (CITE) to enhance pathological image classification. CITE injects text insights gained from language models pre-trained with a broad range of biomedical texts, leading to adapt foundation models towards pathological image understanding. Through extensive experiments on the PatchGastric stomach tumor pathological image dataset, we demonstrate that CITE achieves leading performance compared with various baselines especially when training data is scarce. CITE offers insights into leveraging in-domain text knowledge to reinforce data-efficient pathological image classification. Code is available at https://github.com/Yunkun-Zhang/CITE.

30.NSA: Naturalistic Support Artifact to Boost Network Confidence

Authors:Abhijith Sharma, Phil Munz, Apurva Narayan

Abstract: Visual AI systems are vulnerable to natural and synthetic physical corruption in the real-world. Such corruption often arises unexpectedly and alters the model's performance. In recent years, the primary focus has been on adversarial attacks. However, natural corruptions (e.g., snow, fog, dust) are an omnipresent threat to visual AI systems and should be considered equally important. Many existing works propose interesting solutions to train robust models against natural corruption. These works either leverage image augmentations, which come with the additional cost of model training, or place suspicious patches in the scene to design unadversarial examples. In this work, we propose the idea of naturalistic support artifacts (NSA) for robust prediction. The NSAs are shown to be beneficial in scenarios where model parameters are inaccessible and adding artifacts in the scene is feasible. The NSAs are natural looking objects generated through artifact training using DC-GAN to have high visual fidelity in the scene. We test against natural corruptions on the Imagenette dataset and observe the improvement in prediction confidence score by four times. We also demonstrate NSA's capability to increase adversarial accuracy by 8\% on average. Lastly, we qualitatively analyze NSAs using saliency maps to understand how they help improve prediction confidence.

31.GET3D--: Learning GET3D from Unconstrained Image Collections

Authors:Fanghua Yu, Xintao Wang, Zheyuan Li, Yan-Pei Cao, Ying Shan, Chao Dong

Abstract: The demand for efficient 3D model generation techniques has grown exponentially, as manual creation of 3D models is time-consuming and requires specialized expertise. While generative models have shown potential in creating 3D textured shapes from 2D images, their applicability in 3D industries is limited due to the lack of a well-defined camera distribution in real-world scenarios, resulting in low-quality shapes. To overcome this limitation, we propose GET3D--, the first method that directly generates textured 3D shapes from 2D images with unknown pose and scale. GET3D-- comprises a 3D shape generator and a learnable camera sampler that captures the 6D external changes on the camera. In addition, We propose a novel training schedule to stably optimize both the shape generator and camera sampler in a unified framework. By controlling external variations using the learnable camera sampler, our method can generate aligned shapes with clear textures. Extensive experiments demonstrate the efficacy of GET3D--, which precisely fits the 6D camera pose distribution and generates high-quality shapes on both synthetic and realistic unconstrained datasets.

32.Federated Model Aggregation via Self-Supervised Priors for Highly Imbalanced Medical Image Classification

Authors:Marawan Elbatel, Hualiang Wang, Robert Martí, Huazhu Fu, Xiaomeng Li

Abstract: In the medical field, federated learning commonly deals with highly imbalanced datasets, including skin lesions and gastrointestinal images. Existing federated methods under highly imbalanced datasets primarily focus on optimizing a global model without incorporating the intra-class variations that can arise in medical imaging due to different populations, findings, and scanners. In this paper, we study the inter-client intra-class variations with publicly available self-supervised auxiliary networks. Specifically, we find that employing a shared auxiliary pre-trained model, like MoCo-V2, locally on every client yields consistent divergence measurements. Based on these findings, we derive a dynamic balanced model aggregation via self-supervised priors (MAS) to guide the global model optimization. Fed-MAS can be utilized with different local learning methods for effective model aggregation toward a highly robust and unbiased global model. Our code is available at \url{https://github.com/xmed-lab/Fed-MAS}.

33.Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models

Authors:Ziyi Wang, Xumin Yu, Yongming Rao, Jie Zhou, Jiwen Lu

Abstract: With the overwhelming trend of mask image modeling led by MAE, generative pre-training has shown a remarkable potential to boost the performance of fundamental models in 2D vision. However, in 3D vision, the over-reliance on Transformer-based backbones and the unordered nature of point clouds have restricted the further development of generative pre-training. In this paper, we propose a novel 3D-to-2D generative pre-training method that is adaptable to any point cloud model. We propose to generate view images from different instructed poses via the cross-attention mechanism as the pre-training scheme. Generating view images has more precise supervision than its point cloud counterpart, thus assisting 3D backbones to have a finer comprehension of the geometrical structure and stereoscopic relations of the point cloud. Experimental results have proved the superiority of our proposed 3D-to-2D generative pre-training over previous pre-training methods. Our method is also effective in boosting the performance of architecture-oriented approaches, achieving state-of-the-art performance when fine-tuning on ScanObjectNN classification and ShapeNetPart segmentation tasks. Code is available at https://github.com/wangzy22/TAP.

34.MapNeRF: Incorporating Map Priors into Neural Radiance Fields for Driving View Simulation

Authors:Chenming Wu, Jiadai Sun, Zhelun Shen, Liangjun Zhang

Abstract: Simulating camera sensors is a crucial task in autonomous driving. Although neural radiance fields are exceptional at synthesizing photorealistic views in driving simulations, they still fail in generating extrapolated views. This paper proposes to incorporate map priors into neural radiance fields to synthesize out-of-trajectory driving views with semantic road consistency. The key insight is that map information can be utilized as a prior to guide the training of the radiance fields with uncertainty. Specifically, we utilize the coarse ground surface as uncertain information to supervise the density field and warp depth with uncertainty from unknown camera poses to ensure multi-view consistency. Experimental results demonstrate that our approach can produce semantic consistency in deviated views for vehicle camera simulation.

35.How Good is Google Bard's Visual Understanding? An Empirical Study on Open Challenges

Authors:Haotong Qin, Ge-Peng Ji, Salman Khan, Deng-Ping Fan, Fahad Shahbaz Khan, Luc Van Gool

Abstract: Google's Bard has emerged as a formidable competitor to OpenAI's ChatGPT in the field of conversational AI. Notably, Bard has recently been updated to handle visual inputs alongside text prompts during conversations. Given Bard's impressive track record in handling textual inputs, we explore its capabilities in understanding and interpreting visual data (images) conditioned by text questions. This exploration holds the potential to unveil new insights and challenges for Bard and other forthcoming multi-modal Generative models, especially in addressing complex computer vision problems that demand accurate visual and language understanding. Specifically, in this study, we focus on 15 diverse task scenarios encompassing regular, camouflaged, medical, under-water and remote sensing data to comprehensively evaluate Bard's performance. Our primary finding indicates that Bard still struggles in these vision scenarios, highlighting the significant gap in vision-based understanding that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, leading to enhanced capabilities in comprehending and interpreting fine-grained visual data. Our project is released on https://github.com/htqin/GoogleBard-VisUnderstand

36.Self-Supervised Graph Transformer for Deepfake Detection

Authors:Aminollah Khormali, Jiann-Shiun Yuan

Abstract: Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset, where training and testing take place on the in-distribution dataset. However, their performance deteriorates significantly when presented with unseen samples. As a result, a reliable deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance. Despite various attempts to enhance cross-dataset generalization, the problem remains challenging, particularly when testing against common post-processing perturbations, such as video compression or blur. Hence, this study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability, withstanding common corruptions and enabling feature explainability. The framework comprises three key components: a feature extractor based on vision Transformer architecture that is pre-trained via self-supervised contrastive learning methodology, a graph convolution network coupled with a Transformer discriminator, and a graph Transformer relevancy map that provides a better understanding of manipulated regions and further explains the model's decision. To assess the effectiveness of the proposed framework, several challenging experiments are conducted, including in-data distribution performance, cross-dataset, cross-manipulation generalization, and robustness against common post-production perturbations. The results achieved demonstrate the remarkable effectiveness of the proposed deepfake detection framework, surpassing the current state-of-the-art approaches.

37.Adaptive Segmentation Network for Scene Text Detection

Authors:Guiqin Zhao

Abstract: Inspired by deep convolution segmentation algorithms, scene text detectors break the performance ceiling of datasets steadily. However, these methods often encounter threshold selection bottlenecks and have poor performance on text instances with extreme aspect ratios. In this paper, we propose to automatically learn the discriminate segmentation threshold, which distinguishes text pixels from background pixels for segmentation-based scene text detectors and then further reduces the time-consuming manual parameter adjustment. Besides, we design a Global-information Enhanced Feature Pyramid Network (GE-FPN) for capturing text instances with macro size and extreme aspect ratios. Following the GE-FPN, we introduce a cascade optimization structure to further refine the text instances. Finally, together with the proposed threshold learning strategy and text detection structure, we design an Adaptive Segmentation Network (ASNet) for scene text detection. Extensive experiments are carried out to demonstrate that the proposed ASNet can achieve the state-of-the-art performance on four text detection benchmarks, i.e., ICDAR 2015, MSRA-TD500, ICDAR 2017 MLT and CTW1500. The ablation experiments also verify the effectiveness of our contributions.

38.Diverse Inpainting and Editing with GAN Inversion

Authors:Ahmet Burak Yildirim, Hamza Pehlivan, Bahri Batuhan Bilecen, Aysegul Dundar

Abstract: Recent inversion methods have shown that real images can be inverted into StyleGAN's latent space and numerous edits can be achieved on those images thanks to the semantically rich feature representations of well-trained GAN models. However, extensive research has also shown that image inversion is challenging due to the trade-off between high-fidelity reconstruction and editability. In this paper, we tackle an even more difficult task, inverting erased images into GAN's latent space for realistic inpaintings and editings. Furthermore, by augmenting inverted latent codes with different latent samples, we achieve diverse inpaintings. Specifically, we propose to learn an encoder and mixing network to combine encoded features from erased images with StyleGAN's mapped features from random samples. To encourage the mixing network to utilize both inputs, we train the networks with generated data via a novel set-up. We also utilize higher-rate features to prevent color inconsistencies between the inpainted and unerased parts. We run extensive experiments and compare our method with state-of-the-art inversion and inpainting methods. Qualitative metrics and visual comparisons show significant improvements.

39.TEDi: Temporally-Entangled Diffusion for Long-Term Motion Synthesis

Authors:Zihan Zhang, Richard Liu, Kfir Aberman, Rana Hanocka

Abstract: The gradual nature of a diffusion process that synthesizes samples in small increments constitutes a key ingredient of Denoising Diffusion Probabilistic Models (DDPM), which have presented unprecedented quality in image synthesis and been recently explored in the motion domain. In this work, we propose to adapt the gradual diffusion concept (operating along a diffusion time-axis) into the temporal-axis of the motion sequence. Our key idea is to extend the DDPM framework to support temporally varying denoising, thereby entangling the two axes. Using our special formulation, we iteratively denoise a motion buffer that contains a set of increasingly-noised poses, which auto-regressively produces an arbitrarily long stream of frames. With a stationary diffusion time-axis, in each diffusion step we increment only the temporal-axis of the motion such that the framework produces a new, clean frame which is removed from the beginning of the buffer, followed by a newly drawn noise vector that is appended to it. This new mechanism paves the way towards a new framework for long-term motion synthesis with applications to character animation and other domains.

40.A Transformer-based Approach for Arabic Offline Handwritten Text Recognition

Authors:Saleh Momeni, Bagher BabaAli

Abstract: Handwriting recognition is a challenging and critical problem in the fields of pattern recognition and machine learning, with applications spanning a wide range of domains. In this paper, we focus on the specific issue of recognizing offline Arabic handwritten text. Existing approaches typically utilize a combination of convolutional neural networks for image feature extraction and recurrent neural networks for temporal modeling, with connectionist temporal classification used for text generation. However, these methods suffer from a lack of parallelization due to the sequential nature of recurrent neural networks. Furthermore, these models cannot account for linguistic rules, necessitating the use of an external language model in the post-processing stage to boost accuracy. To overcome these issues, we introduce two alternative architectures, namely the Transformer Transducer and the standard sequence-to-sequence Transformer, and compare their performance in terms of accuracy and speed. Our approach can model language dependencies and relies only on the attention mechanism, thereby making it more parallelizable and less complex. We employ pre-trained Transformers for both image understanding and language modeling. Our evaluation on the Arabic KHATT dataset demonstrates that our proposed method outperforms the current state-of-the-art approaches for recognizing offline Arabic handwritten text.

41.Regularized Mask Tuning: Uncovering Hidden Knowledge in Pre-trained Vision-Language Models

Authors:Kecheng Zheng, Wei Wu, Ruili Feng, Kai Zhu, Jiawei Liu, Deli Zhao, Zheng-Jun Zha, Wei Chen, Yujun Shen

Abstract: Prompt tuning and adapter tuning have shown great potential in transferring pre-trained vision-language models (VLMs) to various downstream tasks. In this work, we design a new type of tuning method, termed as regularized mask tuning, which masks the network parameters through a learnable selection. Inspired by neural pathways, we argue that the knowledge required by a downstream task already exists in the pre-trained weights but just gets concealed in the upstream pre-training stage. To bring the useful knowledge back into light, we first identify a set of parameters that are important to a given downstream task, then attach a binary mask to each parameter, and finally optimize these masks on the downstream data with the parameters frozen. When updating the mask, we introduce a novel gradient dropout strategy to regularize the parameter selection, in order to prevent the model from forgetting old knowledge and overfitting the downstream data. Experimental results on 11 datasets demonstrate the consistent superiority of our method over previous alternatives. It is noteworthy that we manage to deliver 18.73% performance improvement compared to the zero-shot CLIP via masking an average of only 2.56% parameters. Furthermore, our method is synergistic with most existing parameter-efficient tuning methods and can boost the performance on top of them. Project page can be found here (https://wuw2019.github.io/RMT/).

42.Learning Depth Estimation for Transparent and Mirror Surfaces

Authors:Alex Costanzino, Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, Luigi Di Stefano

Abstract: Inferring the depth of transparent or mirror (ToM) surfaces represents a hard challenge for either sensors, algorithms, or deep networks. We propose a simple pipeline for learning to estimate depth properly for such surfaces with neural networks, without requiring any ground-truth annotation. We unveil how to obtain reliable pseudo labels by in-painting ToM objects in images and processing them with a monocular depth estimation model. These labels can be used to fine-tune existing monocular or stereo networks, to let them learn how to deal with ToM surfaces. Experimental results on the Booster dataset show the dramatic improvements enabled by our remarkably simple proposal.

43.PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point Tracking

Authors:Yang Zheng, Adam W. Harley, Bokui Shen, Gordon Wetzstein, Leonidas J. Guibas

Abstract: We introduce PointOdyssey, a large-scale synthetic dataset, and data generation framework, for the training and evaluation of long-term fine-grained tracking algorithms. Our goal is to advance the state-of-the-art by placing emphasis on long videos with naturalistic motion. Toward the goal of naturalism, we animate deformable characters using real-world motion capture data, we build 3D scenes to match the motion capture environments, and we render camera viewpoints using trajectories mined via structure-from-motion on real videos. We create combinatorial diversity by randomizing character appearance, motion profiles, materials, lighting, 3D assets, and atmospheric effects. Our dataset currently includes 104 videos, averaging 2,000 frames long, with orders of magnitude more correspondence annotations than prior work. We show that existing methods can be trained from scratch in our dataset and outperform the published variants. Finally, we introduce modifications to the PIPs point tracking method, greatly widening its temporal receptive field, which improves its performance on PointOdyssey as well as on two real-world benchmarks. Our data and code are publicly available at: https://pointodyssey.com

44.MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving

Authors:Zirui Wu, Tianyu Liu, Liyi Luo, Zhide Zhong, Jianteng Chen, Hongmin Xiao, Chao Hou, Haozhe Lou, Yuantao Chen, Runyi Yang, Yuxin Huang, Xiaoyu Ye, Zike Yan, Yongliang Shi, Yiyi Liao, Hao Zhao

Abstract: Nowadays, autonomous cars can drive smoothly in ordinary cases, and it is widely recognized that realistic sensor simulation will play a critical role in solving remaining corner cases by simulating them. To this end, we propose an autonomous driving simulator based upon neural radiance fields (NeRFs). Compared with existing works, ours has three notable features: (1) Instance-aware. Our simulator models the foreground instances and background environments separately with independent networks so that the static (e.g., size and appearance) and dynamic (e.g., trajectory) properties of instances can be controlled separately. (2) Modular. Our simulator allows flexible switching between different modern NeRF-related backbones, sampling strategies, input modalities, etc. We expect this modular design to boost academic progress and industrial deployment of NeRF-based autonomous driving simulation. (3) Realistic. Our simulator set new state-of-the-art photo-realism results given the best module selection. Our simulator will be open-sourced while most of our counterparts are not. Project page: https://open-air-sun.github.io/mars/.

45.The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation

Authors:Lingdong Kong, Yaru Niu, Shaoyuan Xie, Hanjiang Hu, Lai Xing Ng, Benoit R. Cottereau, Ding Zhao, Liangjun Zhang, Hesheng Wang, Wei Tsang Ooi, Ruijie Zhu, Ziyang Song, Li Liu, Tianzhu Zhang, Jun Yu, Mohan Jing, Pengwei Li, Xiaohua Qi, Cheng Jin, Yingfeng Chen, Jie Hou, Jie Zhang, Zhen Kan, Qiang Ling, Liang Peng, Minglei Li, Di Xu, Changpeng Yang, Yuanqi Yao, Gang Wu, Jian Kuai, Xianming Liu, Junjun Jiang, Jiamian Huang, Baojun Li, Jiale Chen, Shuang Zhang, Sun Ao, Zhenyu Li, Runze Chen, Haiyong Luo, Fang Zhao, Jingze Yu

Abstract: Accurate depth estimation under out-of-distribution (OoD) scenarios, such as adverse weather conditions, sensor failure, and noise contamination, is desirable for safety-critical applications. Existing depth estimation systems, however, suffer inevitably from real-world corruptions and perturbations and are struggled to provide reliable depth predictions under such cases. In this paper, we summarize the winning solutions from the RoboDepth Challenge -- an academic competition designed to facilitate and advance robust OoD depth estimation. This challenge was developed based on the newly established KITTI-C and NYUDepth2-C benchmarks. We hosted two stand-alone tracks, with an emphasis on robust self-supervised and robust fully-supervised depth estimation, respectively. Out of more than two hundred participants, nine unique and top-performing solutions have appeared, with novel designs ranging from the following aspects: spatial- and frequency-domain augmentations, masked image modeling, image restoration and super-resolution, adversarial training, diffusion-based noise suppression, vision-language pre-training, learned model ensembling, and hierarchical feature enhancement. Extensive experimental analyses along with insightful observations are drawn to better understand the rationale behind each design. We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation and beyond. The datasets, competition toolkit, workshop recordings, and source code from the winning teams are publicly available on the challenge website.

46.To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation

Authors:Marc Botet Colomer, Pier Luigi Dovesi, Theodoros Panagiotakopoulos, Joao Frederico Carvalho, Linus Härenstam-Nielsen, Hossein Azizpour, Hedvig Kjellström, Daniel Cremers, Matteo Poggi

Abstract: The goal of Online Domain Adaptation for semantic segmentation is to handle unforeseeable domain changes that occur during deployment, like sudden weather events. However, the high computational costs associated with brute-force adaptation make this paradigm unfeasible for real-world applications. In this paper we propose HAMLET, a Hardware-Aware Modular Least Expensive Training framework for real-time domain adaptation. Our approach includes a hardware-aware back-propagation orchestration agent (HAMT) and a dedicated domain-shift detector that enables active control over when and how the model is adapted (LT). Thanks to these advancements, our approach is capable of performing semantic segmentation while simultaneously adapting at more than 29FPS on a single consumer-grade GPU. Our framework's encouraging accuracy and speed trade-off is demonstrated on OnDA and SHIFT benchmarks through experimental results.