arXiv daily

Computer Vision and Pattern Recognition (cs.CV)

Tue, 01 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.A Study of Unsupervised Evaluation Metrics for Practical and Automatic Domain Adaptation

Authors:Minghao Chen, Zepeng Gao, Shuai Zhao, Qibo Qiu, Wenxiao Wang, Binbin Lin, Xiaofei He

Abstract: Unsupervised domain adaptation (UDA) methods facilitate the transfer of models to target domains without labels. However, these methods necessitate a labeled target validation set for hyper-parameter tuning and model selection. In this paper, we aim to find an evaluation metric capable of assessing the quality of a transferred model without access to target validation labels. We begin with the metric based on mutual information of the model prediction. Through empirical analysis, we identify three prevalent issues with this metric: 1) It does not account for the source structure. 2) It can be easily attacked. 3) It fails to detect negative transfer caused by the over-alignment of source and target features. To address the first two issues, we incorporate source accuracy into the metric and employ a new MLP classifier that is held out during training, significantly improving the result. To tackle the final issue, we integrate this enhanced metric with data augmentation, resulting in a novel unsupervised UDA metric called the Augmentation Consistency Metric (ACM). Additionally, we empirically demonstrate the shortcomings of previous experiment settings and conduct large-scale experiments to validate the effectiveness of our proposed metric. Furthermore, we employ our metric to automatically search for the optimal hyper-parameter set, achieving superior performance compared to manually tuned sets across four common benchmarks. Codes will be available soon.

2.Making the V in Text-VQA Matter

Authors:Shamanthak Hegde, Soumya Jahagirdar, Shankar Gangisetty

Abstract: Text-based VQA aims at answering questions by reading the text present in the images. It requires a large amount of scene-text relationship understanding compared to the VQA task. Recent studies have shown that the question-answer pairs in the dataset are more focused on the text present in the image but less importance is given to visual features and some questions do not require understanding the image. The models trained on this dataset predict biased answers due to the lack of understanding of visual context. For example, in questions like "What is written on the signboard?", the answer predicted by the model is always "STOP" which makes the model to ignore the image. To address these issues, we propose a method to learn visual features (making V matter in TextVQA) along with the OCR features and question features using VQA dataset as external knowledge for Text-based VQA. Specifically, we combine the TextVQA dataset and VQA dataset and train the model on this combined dataset. Such a simple, yet effective approach increases the understanding and correlation between the image features and text present in the image, which helps in the better answering of questions. We further test the model on different datasets and compare their qualitative and quantitative results.

3.Online Prototype Learning for Online Continual Learning

Authors:Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, Hongming Shan

Abstract: Online continual learning (CL) studies the problem of learning continuously from a single-pass data stream while adapting to new data and mitigating catastrophic forgetting. Recently, by storing a small subset of old data, replay-based methods have shown promising performance. Unlike previous methods that focus on sample storage or knowledge distillation against catastrophic forgetting, this paper aims to understand why the online learning models fail to generalize well from a new perspective of shortcut learning. We identify shortcut learning as the key limiting factor for online CL, where the learned features may be biased, not generalizable to new tasks, and may have an adverse impact on knowledge distillation. To tackle this issue, we present the online prototype learning (OnPro) framework for online CL. First, we propose online prototype equilibrium to learn representative features against shortcut learning and discriminative features to avoid class confusion, ultimately achieving an equilibrium status that separates all seen classes well while learning new classes. Second, with the feedback of online prototypes, we devise a novel adaptive prototypical feedback mechanism to sense the classes that are easily misclassified and then enhance their boundaries. Extensive experimental results on widely-used benchmark datasets demonstrate the superior performance of OnPro over the state-of-the-art baseline methods. Source code is available at https://github.com/weilllllls/OnPro.

4.Diffusion Model for Camouflaged Object Detection

Authors:Zhennan Chen, Rongrong Gao, Tian-Zhu Xiang, Fan Lin

Abstract: Camouflaged object detection is a challenging task that aims to identify objects that are highly similar to their background. Due to the powerful noise-to-image denoising capability of denoising diffusion models, in this paper, we propose a diffusion-based framework for camouflaged object detection, termed diffCOD, a new framework that considers the camouflaged object segmentation task as a denoising diffusion process from noisy masks to object masks. Specifically, the object mask diffuses from the ground-truth masks to a random distribution, and the designed model learns to reverse this noising process. To strengthen the denoising learning, the input image prior is encoded and integrated into the denoising diffusion model to guide the diffusion process. Furthermore, we design an injection attention module (IAM) to interact conditional semantic features extracted from the image with the diffusion noise embedding via the cross-attention mechanism to enhance denoising learning. Extensive experiments on four widely used COD benchmark datasets demonstrate that the proposed method achieves favorable performance compared to the existing 11 state-of-the-art methods, especially in the detailed texture segmentation of camouflaged objects. Our code will be made publicly available at: https://github.com/ZNan-Chen/diffCOD.

5.Domain Adaptation based on Human Feedback for Enhancing Generative Model Denoising Abilities

Authors:Hyun-Cheol Park, Sung Ho Kang

Abstract: How can we apply human feedback into generative model? As answer of this question, in this paper, we show the method applied on denoising problem and domain adaptation using human feedback. Deep generative models have demonstrated impressive results in image denoising. However, current image denoising models often produce inappropriate results when applied to domains different from the ones they were trained on. If there are `Good' and `Bad' result for unseen data, how to raise up quality of `Bad' result. Most methods use an approach based on generalization of model. However, these methods require target image for training or adapting unseen domain. In this paper, to adapting domain, we deal with non-target image for unseen domain, and improve specific failed image. To address this, we propose a method for fine-tuning inappropriate results generated in a different domain by utilizing human feedback. First, we train a generator to denoise images using only the noisy MNIST digit '0' images. The denoising generator trained on the source domain leads to unintended results when applied to target domain images. To achieve domain adaptation, we construct a noise-image denoising generated image data set and train a reward model predict human feedback. Finally, we fine-tune the generator on the different domain using the reward model with auxiliary loss function, aiming to transfer denoising capabilities to target domain. Our approach demonstrates the potential to efficiently fine-tune a generator trained on one domain using human feedback from another domain, thereby enhancing denoising abilities in different domains.

6.GradOrth: A Simple yet Efficient Out-of-Distribution Detection with Orthogonal Projection of Gradients

Authors:Sima Behpour, Thang Doan, Xin Li, Wenbin He, Liang Gou, Liu Ren

Abstract: Detecting out-of-distribution (OOD) data is crucial for ensuring the safe deployment of machine learning models in real-world applications. However, existing OOD detection approaches primarily rely on the feature maps or the full gradient space information to derive OOD scores neglecting the role of most important parameters of the pre-trained network over in-distribution (ID) data. In this study, we propose a novel approach called GradOrth to facilitate OOD detection based on one intriguing observation that the important features to identify OOD data lie in the lower-rank subspace of in-distribution (ID) data. In particular, we identify OOD data by computing the norm of gradient projection on the subspaces considered important for the in-distribution data. A large orthogonal projection value (i.e. a small projection value) indicates the sample as OOD as it captures a weak correlation of the ID data. This simple yet effective method exhibits outstanding performance, showcasing a notable reduction in the average false positive rate at a 95% true positive rate (FPR95) of up to 8% when compared to the current state-of-the-art methods.

7.Zero-Shot Learning by Harnessing Adversarial Samples

Authors:Zhi Chen, Pengfei Zhang, Jingjing Li, Sen Wang, Zi Huang

Abstract: Zero-Shot Learning (ZSL) aims to recognize unseen classes by generalizing the knowledge, i.e., visual and semantic relationships, obtained from seen classes, where image augmentation techniques are commonly applied to improve the generalization ability of a model. However, this approach can also cause adverse effects on ZSL since the conventional augmentation techniques that solely depend on single-label supervision is not able to maintain semantic information and result in the semantic distortion issue consequently. In other words, image argumentation may falsify the semantic (e.g., attribute) information of an image. To take the advantage of image augmentations while mitigating the semantic distortion issue, we propose a novel ZSL approach by Harnessing Adversarial Samples (HAS). HAS advances ZSL through adversarial training which takes into account three crucial aspects: (1) robust generation by enforcing augmentations to be similar to negative classes, while maintaining correct labels, (2) reliable generation by introducing a latent space constraint to avert significant deviations from the original data manifold, and (3) diverse generation by incorporating attribute-based perturbation by adjusting images according to each semantic attribute's localization. Through comprehensive experiments on three prominent zero-shot benchmark datasets, we demonstrate the effectiveness of our adversarial samples approach in both ZSL and Generalized Zero-Shot Learning (GZSL) scenarios. Our source code is available at https://github.com/uqzhichen/HASZSL.

8.Fine-Grained Sports, Yoga, and Dance Postures Recognition: A Benchmark Analysis

Authors:Asish Bera, Mita Nasipuri, Ondrej Krejcar, Debotosh Bhattacharjee

Abstract: Human body-pose estimation is a complex problem in computer vision. Recent research interests have been widened specifically on the Sports, Yoga, and Dance (SYD) postures for maintaining health conditions. The SYD pose categories are regarded as a fine-grained image classification task due to the complex movement of body parts. Deep Convolutional Neural Networks (CNNs) have attained significantly improved performance in solving various human body-pose estimation problems. Though decent progress has been achieved in yoga postures recognition using deep learning techniques, fine-grained sports, and dance recognition necessitates ample research attention. However, no benchmark public image dataset with sufficient inter-class and intra-class variations is available yet to address sports and dance postures classification. To solve this limitation, we have proposed two image datasets, one for 102 sport categories and another for 12 dance styles. Two public datasets, Yoga-82 which contains 82 classes and Yoga-107 represents 107 classes are collected for yoga postures. These four SYD datasets are experimented with the proposed deep model, SYD-Net, which integrates a patch-based attention (PbA) mechanism on top of standard backbone CNNs. The PbA module leverages the self-attention mechanism that learns contextual information from a set of uniform and multi-scale patches and emphasizes discriminative features to understand the semantic correlation among patches. Moreover, random erasing data augmentation is applied to improve performance. The proposed SYD-Net has achieved state-of-the-art accuracy on Yoga-82 using five base CNNs. SYD-Net's accuracy on other datasets is remarkable, implying its efficiency. Our Sports-102 and Dance-12 datasets are publicly available at https://sites.google.com/view/syd-net/home.

9.Lowis3D: Language-Driven Open-World Instance-Level 3D Scene Understanding

Authors:Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, Xiaojuan Qi

Abstract: Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset. This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories. A key factor for the recent progress in 2D open-world perception is the availability of large-scale image-text pairs from the Internet, which cover a wide range of vocabulary concepts. However, this success is hard to replicate in 3D scenarios due to the scarcity of 3D-text pairs. To address this challenge, we propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for multi-view images of 3D scenes. This allows us to establish explicit associations between 3D shapes and semantic-rich captions. Moreover, to enhance the fine-grained visual-semantic representation learning from captions for object-level categorization, we design hierarchical point-caption association methods to learn semantic-aware embeddings that exploit the 3D geometry between 3D points and multi-view images. In addition, to tackle the localization challenge for novel classes in the open-world setting, we develop debiased instance localization, which involves training object grouping modules on unlabeled data using instance-level pseudo supervision. This significantly improves the generalization capabilities of instance grouping and thus the ability to accurately locate novel objects. We conduct extensive experiments on 3D semantic, instance, and panoptic segmentation tasks, covering indoor and outdoor scenes across three datasets. Our method outperforms baseline methods by a significant margin in semantic segmentation (e.g. 34.5%$\sim$65.3%), instance segmentation (e.g. 21.8%$\sim$54.0%) and panoptic segmentation (e.g. 14.7%$\sim$43.3%). Code will be available.

10.Deep Image Harmonization with Globally Guided Feature Transformation and Relation Distillation

Authors:Li Niu, Linfeng Tan, Xinhao Tao, Junyan Cao, Fengjun Guo, Teng Long, Liqing Zhang

Abstract: Given a composite image, image harmonization aims to adjust the foreground illumination to be consistent with background. Previous methods have explored transforming foreground features to achieve competitive performance. In this work, we show that using global information to guide foreground feature transformation could achieve significant improvement. Besides, we propose to transfer the foreground-background relation from real images to composite images, which can provide intermediate supervision for the transformed encoder features. Additionally, considering the drawbacks of existing harmonization datasets, we also contribute a ccHarmony dataset which simulates the natural illumination variation. Extensive experiments on iHarmony4 and our contributed dataset demonstrate the superiority of our method. Our ccHarmony dataset is released at https://github.com/bcmi/Image-Harmonization-Dataset-ccHarmony.

11.Deep Image Harmonization with Learnable Augmentation

Authors:Li Niu, Junyan Cao, Wenyan Cong, Liqing Zhang

Abstract: The goal of image harmonization is adjusting the foreground appearance in a composite image to make the whole image harmonious. To construct paired training images, existing datasets adopt different ways to adjust the illumination statistics of foregrounds of real images to produce synthetic composite images. However, different datasets have considerable domain gap and the performances on small-scale datasets are limited by insufficient training data. In this work, we explore learnable augmentation to enrich the illumination diversity of small-scale datasets for better harmonization performance. In particular, our designed SYthetic COmposite Network (SycoNet) takes in a real image with foreground mask and a random vector to learn suitable color transformation, which is applied to the foreground of this real image to produce a synthetic composite image. Comprehensive experiments demonstrate the effectiveness of our proposed learnable augmentation for image harmonization. The code of SycoNet is released at https://github.com/bcmi/SycoNet-Adaptive-Image-Harmonization.

12.Shape Completion with Prediction of Uncertain Regions

Authors:Matthias Humt, Dominik Winkelbauer, Ulrich Hillenbrand

Abstract: Shape completion, i.e., predicting the complete geometry of an object from a partial observation, is highly relevant for several downstream tasks, most notably robotic manipulation. When basing planning or prediction of real grasps on object shape reconstruction, an indication of severe geometric uncertainty is indispensable. In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views. To treat this important case, we propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy, one through postprocessing occupancy scores, the other through direct prediction of an uncertainty indicator. We compare these methods together with two known approaches to probabilistic shape completion. Moreover, we generate a dataset, derived from ShapeNet, of realistically rendered depth images of object views with ground-truth annotations for the uncertain regions. We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances and on synthetic and real data. While direct uncertainty prediction is by far the most accurate in the segmentation of uncertain regions, both novel methods outperform the two baselines in shape completion and uncertain region prediction, and avoiding the predicted uncertain regions increases the quality of grasps for all tested methods. Web: https://github.com/DLR-RM/shape-completion

13.On the Generation of a Synthetic Event-Based Vision Dataset for Navigation and Landing

Authors:Loïc J. Azzalini, Emmanuel Blazquez, Alexander Hadjiivanov, Gabriele Meoni, Dario Izzo

Abstract: An event-based camera outputs an event whenever a change in scene brightness of a preset magnitude is detected at a particular pixel location in the sensor plane. The resulting sparse and asynchronous output coupled with the high dynamic range and temporal resolution of this novel camera motivate the study of event-based cameras for navigation and landing applications. However, the lack of real-world and synthetic datasets to support this line of research has limited its consideration for onboard use. This paper presents a methodology and a software pipeline for generating event-based vision datasets from optimal landing trajectories during the approach of a target body. We construct sequences of photorealistic images of the lunar surface with the Planet and Asteroid Natural Scene Generation Utility at different viewpoints along a set of optimal descent trajectories obtained by varying the boundary conditions. The generated image sequences are then converted into event streams by means of an event-based camera emulator. We demonstrate that the pipeline can generate realistic event-based representations of surface features by constructing a dataset of 500 trajectories, complete with event streams and motion field ground truth data. We anticipate that novel event-based vision datasets can be generated using this pipeline to support various spacecraft pose reconstruction problems given events as input, and we hope that the proposed methodology would attract the attention of researchers working at the intersection of neuromorphic vision and guidance navigation and control.

14.VideoPro: A Visual Analytics Approach for Interactive Video Programming

Authors:Jianben He, Xingbo Wang, Kam Kwai Wong, Xijie Huang, Changjian Chen, Zixin Chen, Fengjie Wang, Min Zhu, Huamin Qu

Abstract: Constructing supervised machine learning models for real-world video analysis require substantial labeled data, which is costly to acquire due to scarce domain expertise and laborious manual inspection. While data programming shows promise in generating labeled data at scale with user-defined labeling functions, the high dimensional and complex temporal information in videos poses additional challenges for effectively composing and evaluating labeling functions. In this paper, we propose VideoPro, a visual analytics approach to support flexible and scalable video data programming for model steering with reduced human effort. We first extract human-understandable events from videos using computer vision techniques and treat them as atomic components of labeling functions. We further propose a two-stage template mining algorithm that characterizes the sequential patterns of these events to serve as labeling function templates for efficient data labeling. The visual interface of VideoPro facilitates multifaceted exploration, examination, and application of the labeling templates, allowing for effective programming of video data at scale. Moreover, users can monitor the impact of programming on model performance and make informed adjustments during the iterative programming process. We demonstrate the efficiency and effectiveness of our approach with two case studies and expert interviews.

15.Multiscale Global and Regional Feature Learning Using Co-Tuplet Loss for Offline Handwritten Signature Verification

Authors:Fu-Hsien Huang, Hsin-Min Lu

Abstract: Handwritten signature verification is a significant biometric verification method widely acknowledged by legal and financial institutions. However, the development of automatic signature verification systems poses challenges due to inter-writer similarity, intra-writer variations, and the limited number of signature samples. To address these challenges, we propose a multiscale global and regional feature learning network (MGRNet) with the co-tuplet loss, a new metric learning loss, for offline handwritten signature verification. MGRNet jointly learns global and regional information from various spatial scales and integrates it to generate discriminative features. Consequently, it can capture overall signature stroke information while detecting detailed local differences between genuine and skilled-forged signatures. To enhance the discriminative capability of our network further, we propose the co-tuplet loss, which simultaneously considers multiple positive and negative examples to learn distance metrics. By dealing with inter-writer similarity and intra-writer variations and focusing on informative examples, the co-tuplet loss addresses the limitations of typical metric learning losses. Additionally, we develop HanSig, a large-scale Chinese signature dataset, to facilitate the development of robust systems for this script. The dataset is available at https://github.com/ashleyfhh/HanSig. Experimental results on four benchmark datasets in different languages demonstrate the promising performance of our method in comparison to state-of-the-art approaches.

16.Patch-wise Auto-Encoder for Visual Anomaly Detection

Authors:Yajie Cui, Zhaoxiang Liu, Shiguo Lian

Abstract: Anomaly detection without priors of the anomalies is challenging. In the field of unsupervised anomaly detection, traditional auto-encoder (AE) tends to fail based on the assumption that by training only on normal images, the model will not be able to reconstruct abnormal images correctly. On the contrary, we propose a novel patch-wise auto-encoder (Patch AE) framework, which aims at enhancing the reconstruction ability of AE to anomalies instead of weakening it. Each patch of image is reconstructed by corresponding spatially distributed feature vector of the learned feature representation, i.e., patch-wise reconstruction, which ensures anomaly-sensitivity of AE. Our method is simple and efficient. It advances the state-of-the-art performances on Mvtec AD benchmark, which proves the effectiveness of our model. It shows great potential in practical industrial application scenarios.

17.FLatten Transformer: Vision Transformer using Focused Linear Attention

Authors:Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, Gao Huang

Abstract: The quadratic computation complexity of self-attention has been a persistent challenge when applying Transformer models to vision tasks. Linear attention, on the other hand, offers a much more efficient alternative with its linear complexity by approximating the Softmax operation through carefully designed mapping functions. However, current linear attention approaches either suffer from significant performance degradation or introduce additional computation overhead from the mapping functions. In this paper, we propose a novel Focused Linear Attention module to achieve both high efficiency and expressiveness. Specifically, we first analyze the factors contributing to the performance degradation of linear attention from two perspectives: the focus ability and feature diversity. To overcome these limitations, we introduce a simple yet effective mapping function and an efficient rank restoration module to enhance the expressiveness of self-attention while maintaining low computation complexity. Extensive experiments show that our linear attention module is applicable to a variety of advanced vision Transformers, and achieves consistently improved performances on multiple benchmarks. Code is available at https://github.com/LeapLabTHU/FLatten-Transformer.

18.Physics-Driven Spectrum-Consistent Federated Learning for Palmprint Verification

Authors:Ziyuan Yang, Andrew Beng Jin Teoh, Bob Zhang, Lu Leng, Yi Zhang

Abstract: Palmprint as biometrics has gained increasing attention recently due to its discriminative ability and robustness. However, existing methods mainly improve palmprint verification within one spectrum, which is challenging to verify across different spectrums. Additionally, in distributed server-client-based deployment, palmprint verification systems predominantly necessitate clients to transmit private data for model training on the centralized server, thereby engendering privacy apprehensions. To alleviate the above issues, in this paper, we propose a physics-driven spectrum-consistent federated learning method for palmprint verification, dubbed as PSFed-Palm. PSFed-Palm draws upon the inherent physical properties of distinct wavelength spectrums, wherein images acquired under similar wavelengths display heightened resemblances. Our approach first partitions clients into short- and long-spectrum groups according to the wavelength range of their local spectrum images. Subsequently, we introduce anchor models for short- and long-spectrum, which constrain the optimization directions of local models associated with long- and short-spectrum images. Specifically, a spectrum-consistent loss that enforces the model parameters and feature representation to align with their corresponding anchor models is designed. Finally, we impose constraints on the local models to ensure their consistency with the global model, effectively preventing model drift. This measure guarantees spectrum consistency while protecting data privacy, as there is no need to share local data. Extensive experiments are conducted to validate the efficacy of our proposed PSFed-Palm approach. The proposed PSFed-Palm demonstrates compelling performance despite only a limited number of training data. The codes will be released at https://github.com/Zi-YuanYang/PSFed-Palm.

19.ViT2EEG: Leveraging Hybrid Pretrained Vision Transformers for EEG Data

Authors:Ruiqi Yang, Eric Modesitt

Abstract: In this study, we demonstrate the application of a hybrid Vision Transformer (ViT) model, pretrained on ImageNet, on an electroencephalogram (EEG) regression task. Despite being originally trained for image classification tasks, when fine-tuned on EEG data, this model shows a notable increase in performance compared to other models, including an identical architecture ViT trained without the ImageNet weights. This discovery challenges the traditional understanding of model generalization, suggesting that Transformer models pretrained on seemingly unrelated image data can provide valuable priors for EEG regression tasks with an appropriate fine-tuning pipeline. The success of this approach suggests that the features extracted by ViT models in the context of visual tasks can be readily transformed for the purpose of EEG predictive modeling. We recommend utilizing this methodology not only in neuroscience and related fields, but generally for any task where data collection is limited by practical, financial, or ethical constraints. Our results illuminate the potential of pretrained models on tasks that are clearly distinct from their original purpose.

20.Center Contrastive Loss for Metric Learning

Authors:Bolun Cai, Pengfei Xiong, Shangxuan Tian

Abstract: Contrastive learning is a major studied topic in metric learning. However, sampling effective contrastive pairs remains a challenge due to factors such as limited batch size, imbalanced data distribution, and the risk of overfitting. In this paper, we propose a novel metric learning function called Center Contrastive Loss, which maintains a class-wise center bank and compares the category centers with the query data points using a contrastive loss. The center bank is updated in real-time to boost model convergence without the need for well-designed sample mining. The category centers are well-optimized classification proxies to re-balance the supervisory signal of each class. Furthermore, the proposed loss combines the advantages of both contrastive and classification methods by reducing intra-class variations and enhancing inter-class differences to improve the discriminative power of embeddings. Our experimental results, as shown in Figure 1, demonstrate that a standard network (ResNet50) trained with our loss achieves state-of-the-art performance and faster convergence.

21.A Satellite Imagery Dataset for Long-Term Sustainable Development in United States Cities

Authors:Yanxin Xi, Yu Liu, Tong Li, Jintao Ding, Yunke Zhang, Sasu Tarkoma, Yong Li, Pan Hui

Abstract: Cities play an important role in achieving sustainable development goals (SDGs) to promote economic growth and meet social needs. Especially satellite imagery is a potential data source for studying sustainable urban development. However, a comprehensive dataset in the United States (U.S.) covering multiple cities, multiple years, multiple scales, and multiple indicators for SDG monitoring is lacking. To support the research on SDGs in U.S. cities, we develop a satellite imagery dataset using deep learning models for five SDGs containing 25 sustainable development indicators. The proposed dataset covers the 100 most populated U.S. cities and corresponding Census Block Groups from 2014 to 2023. Specifically, we collect satellite imagery and identify objects with state-of-the-art object detection and semantic segmentation models to observe cities' bird's-eye view. We further gather population, nighttime light, survey, and built environment data to depict SDGs regarding poverty, health, education, inequality, and living environment. We anticipate the dataset to help urban policymakers and researchers to advance SDGs-related studies, especially applying satellite imagery to monitor long-term and multi-scale SDGs in cities.

22.Relational Contrastive Learning for Scene Text Recognition

Authors:Jinglei Zhang, Tiancheng Lin, Yi Xu, Kai Chen, Rui Zhang

Abstract: Context-aware methods achieved great success in supervised scene text recognition via incorporating semantic priors from words. We argue that such prior contextual information can be interpreted as the relations of textual primitives due to the heterogeneous text and background, which can provide effective self-supervised labels for representation learning. However, textual relations are restricted to the finite size of dataset due to lexical dependencies, which causes the problem of over-fitting and compromises representation robustness. To this end, we propose to enrich the textual relations via rearrangement, hierarchy and interaction, and design a unified framework called RCLSTR: Relational Contrastive Learning for Scene Text Recognition. Based on causality, we theoretically explain that three modules suppress the bias caused by the contextual prior and thus guarantee representation robustness. Experiments on representation quality show that our method outperforms state-of-the-art self-supervised STR methods. Code is available at https://github.com/ThunderVVV/RCLSTR.

23.Markerless human pose estimation for biomedical applications: a survey

Authors:Andrea Avogaro, Federico Cunico, Bodo Rosenhahn, Francesco Setti

Abstract: Markerless Human Pose Estimation (HPE) proved its potential to support decision making and assessment in many fields of application. HPE is often preferred to traditional marker-based Motion Capture systems due to the ease of setup, portability, and affordable cost of the technology. However, the exploitation of HPE in biomedical applications is still under investigation. This review aims to provide an overview of current biomedical applications of HPE. In this paper, we examine the main features of HPE approaches and discuss whether or not those features are of interest to biomedical applications. We also identify those areas where HPE is already in use and present peculiarities and trends followed by researchers and practitioners. We include here 25 approaches to HPE and more than 40 studies of HPE applied to motor development assessment, neuromuscolar rehabilitation, and gait & posture analysis. We conclude that markerless HPE offers great potential for extending diagnosis and rehabilitation outside hospitals and clinics, toward the paradigm of remote medical care.

24.NormKD: Normalized Logits for Knowledge Distillation

Authors:Zhihao Chi, Tu Zheng, Hengjia Li, Zheng Yang, Boxi Wu, Binbin Lin, Deng Cai

Abstract: Logit based knowledge distillation gets less attention in recent years since feature based methods perform better in most cases. Nevertheless, we find it still has untapped potential when we re-investigate the temperature, which is a crucial hyper-parameter to soften the logit outputs. For most of the previous works, it was set as a fixed value for the entire distillation procedure. However, as the logits from different samples are distributed quite variously, it is not feasible to soften all of them to an equal degree by just a single temperature, which may make the previous work transfer the knowledge of each sample inadequately. In this paper, we restudy the hyper-parameter temperature and figure out its incapability to distill the knowledge from each sample sufficiently when it is a single value. To address this issue, we propose Normalized Knowledge Distillation (NormKD), with the purpose of customizing the temperature for each sample according to the characteristic of the sample's logit distribution. Compared to the vanilla KD, NormKD barely has extra computation or storage cost but performs significantly better on CIRAR-100 and ImageNet for image classification. Furthermore, NormKD can be easily applied to the other logit based methods and achieve better performance which can be closer to or even better than the feature based method.

25.Transfer-Ensemble Learning based Deep Convolutional Neural Networks for Diabetic Retinopathy Classification

Authors:Susmita Ghosh, Abhiroop Chatterjee

Abstract: This article aims to classify diabetic retinopathy (DR) disease into five different classes using an ensemble approach based on two popular pre-trained convolutional neural networks: VGG16 and Inception V3. The proposed model aims to leverage the strengths of the two individual nets to enhance the classification performance for diabetic retinopathy. The ensemble model architecture involves freezing a portion of the layers in each pre-trained model to utilize their learned representations effectively. Global average pooling layers are added to transform the output feature maps into fixed-length vectors. These vectors are then concatenated to form a consolidated representation of the input image. The ensemble model is trained using a dataset of diabetic retinopathy images (APTOS), divided into training and validation sets. During the training process, the model learns to classify the retinal images into the corresponding diabetic retinopathy classes. Experimental results on the test set demonstrate the efficacy of the proposed ensemble model for DR classification achieving an accuracy of 96.4%.

26.PressureTransferNet: Human Attribute Guided Dynamic Ground Pressure Profile Transfer using 3D simulated Pressure Maps

Authors:Lala Shakti Swarup Ray, Vitor Fortes Rey, Bo Zhou, Sungho Suh, Paul Lukowicz

Abstract: We propose PressureTransferNet, a novel method for Human Activity Recognition (HAR) using ground pressure information. Our approach generates body-specific dynamic ground pressure profiles for specific activities by leveraging existing pressure data from different individuals. PressureTransferNet is an encoder-decoder model taking a source pressure map and a target human attribute vector as inputs, producing a new pressure map reflecting the target attribute. To train the model, we use a sensor simulation to create a diverse dataset with various human attributes and pressure profiles. Evaluation on a real-world dataset shows its effectiveness in accurately transferring human attributes to ground pressure profiles across different scenarios. We visually confirm the fidelity of the synthesized pressure shapes using a physics-based deep learning model and achieve a binary R-square value of 0.79 on areas with ground contact. Validation through classification with F1 score (0.911$\pm$0.015) on physical pressure mat data demonstrates the correctness of the synthesized pressure maps, making our method valuable for data augmentation, denoising, sensor simulation, and anomaly detection. Applications span sports science, rehabilitation, and bio-mechanics, contributing to the development of HAR systems.

27.Detecting Cloud Presence in Satellite Images Using the RGB-based CLIP Vision-Language Model

Authors:Mikolaj Czerkawski, Robert Atkinson, Christos Tachtatzis

Abstract: This work explores capabilities of the pre-trained CLIP vision-language model to identify satellite images affected by clouds. Several approaches to using the model to perform cloud presence detection are proposed and evaluated, including a purely zero-shot operation with text prompts and several fine-tuning approaches. Furthermore, the transferability of the methods across different datasets and sensor types (Sentinel-2 and Landsat-8) is tested. The results that CLIP can achieve non-trivial performance on the cloud presence detection task with apparent capability to generalise across sensing modalities and sensing bands. It is also found that a low-cost fine-tuning stage leads to a strong increase in true negative rate. The results demonstrate that the representations learned by the CLIP model can be useful for satellite image processing tasks involving clouds.

28.PVG: Progressive Vision Graph for Vision Recognition

Authors:Jiafu Wu, Jian Li, Jiangning Zhang, Boshen Zhang, Mingmin Chi, Yabiao Wang, Chengjie Wang

Abstract: Convolution-based and Transformer-based vision backbone networks process images into the grid or sequence structures, respectively, which are inflexible for capturing irregular objects. Though Vision GNN (ViG) adopts graph-level features for complex images, it has some issues, such as inaccurate neighbor node selection, expensive node information aggregation calculation, and over-smoothing in the deep layers. To address the above problems, we propose a Progressive Vision Graph (PVG) architecture for vision recognition task. Compared with previous works, PVG contains three main components: 1) Progressively Separated Graph Construction (PSGC) to introduce second-order similarity by gradually increasing the channel of the global graph branch and decreasing the channel of local branch as the layer deepens; 2) Neighbor nodes information aggregation and update module by using Max pooling and mathematical Expectation (MaxE) to aggregate rich neighbor information; 3) Graph error Linear Unit (GraphLU) to enhance low-value information in a relaxed form to reduce the compression of image detail information for alleviating the over-smoothing. Extensive experiments on mainstream benchmarks demonstrate the superiority of PVG over state-of-the-art methods, e.g., our PVG-S obtains 83.0% Top-1 accuracy on ImageNet-1K that surpasses GNN-based ViG-S by +0.9 with the parameters reduced by 18.5%, while the largest PVG-B obtains 84.2% that has +0.5 improvement than ViG-B. Furthermore, our PVG-S obtains +1.3 box AP and +0.4 mask AP gains than ViG-S on COCO dataset.

29.Relation-Aware Distribution Representation Network for Person Clustering with Multiple Modalities

Authors:Kaijian Liu, Shixiang Tang, Ziyue Li, Zhishuai Li, Lei Bai, Feng Zhu, Rui Zhao

Abstract: Person clustering with multi-modal clues, including faces, bodies, and voices, is critical for various tasks, such as movie parsing and identity-based movie editing. Related methods such as multi-view clustering mainly project multi-modal features into a joint feature space. However, multi-modal clue features are usually rather weakly correlated due to the semantic gap from the modality-specific uniqueness. As a result, these methods are not suitable for person clustering. In this paper, we propose a Relation-Aware Distribution representation Network (RAD-Net) to generate a distribution representation for multi-modal clues. The distribution representation of a clue is a vector consisting of the relation between this clue and all other clues from all modalities, thus being modality agnostic and good for person clustering. Accordingly, we introduce a graph-based method to construct distribution representation and employ a cyclic update policy to refine distribution representation progressively. Our method achieves substantial improvements of +6% and +8.2% in F-score on the Video Person-Clustering Dataset (VPCD) and VoxCeleb2 multi-view clustering dataset, respectively. Codes will be released publicly upon acceptance.

30.Visibility Enhancement for Low-light Hazy Scenarios

Authors:Chaoqun Zhuang, Yunfei Liu, Sijia Wen, Feng Lu

Abstract: Low-light hazy scenes commonly appear at dusk and early morning. The visual enhancement for low-light hazy images is an ill-posed problem. Even though numerous methods have been proposed for image dehazing and low-light enhancement respectively, simply integrating them cannot deliver pleasing results for this particular task. In this paper, we present a novel method to enhance visibility for low-light hazy scenarios. To handle this challenging task, we propose two key techniques, namely cross-consistency dehazing-enhancement framework and physically based simulation for low-light hazy dataset. Specifically, the framework is designed for enhancing visibility of the input image via fully utilizing the clues from different sub-tasks. The simulation is designed for generating the dataset with ground-truths by the proposed low-light hazy imaging model. The extensive experimental results show that the proposed method outperforms the SOTA solutions on different metrics including SSIM (9.19%) and PSNR(5.03%). In addition, we conduct a user study on real images to demonstrate the effectiveness and necessity of the proposed method by human visual perception.

31.MonoNext: A 3D Monocular Object Detection with ConvNext

Authors:Marcelo Eduardo Pederiva, José Mario De Martino, Alessandro Zimmer

Abstract: Autonomous driving perception tasks rely heavily on cameras as the primary sensor for Object Detection, Semantic Segmentation, Instance Segmentation, and Object Tracking. However, RGB images captured by cameras lack depth information, which poses a significant challenge in 3D detection tasks. To supplement this missing data, mapping sensors such as LIDAR and RADAR are used for accurate 3D Object Detection. Despite their significant accuracy, the multi-sensor models are expensive and require a high computational demand. In contrast, Monocular 3D Object Detection models are becoming increasingly popular, offering a faster, cheaper, and easier-to-implement solution for 3D detections. This paper introduces a different Multi-Tasking Learning approach called MonoNext that utilizes a spatial grid to map objects in the scene. MonoNext employs a straightforward approach based on the ConvNext network and requires only 3D bounding box annotated data. In our experiments with the KITTI dataset, MonoNext achieved high precision and competitive performance comparable with state-of-the-art approaches. Furthermore, by adding more training data, MonoNext surpassed itself and achieved higher accuracies.

32.Beyond One-Hot-Encoding: Injecting Semantics to Drive Image Classifiers

Authors:Alan Perotti, Simone Bertolotto, Eliana Pastor, André Panisson

Abstract: Images are loaded with semantic information that pertains to real-world ontologies: dog breeds share mammalian similarities, food pictures are often depicted in domestic environments, and so on. However, when training machine learning models for image classification, the relative similarities amongst object classes are commonly paired with one-hot-encoded labels. According to this logic, if an image is labelled as 'spoon', then 'tea-spoon' and 'shark' are equally wrong in terms of training loss. To overcome this limitation, we explore the integration of additional goals that reflect ontological and semantic knowledge, improving model interpretability and trustworthiness. We suggest a generic approach that allows to derive an additional loss term starting from any kind of semantic information about the classification label. First, we show how to apply our approach to ontologies and word embeddings, and discuss how the resulting information can drive a supervised learning process. Second, we use our semantically enriched loss to train image classifiers, and analyse the trade-offs between accuracy, mistake severity, and learned internal representations. Finally, we discuss how this approach can be further exploited in terms of explainability and adversarial robustness. Code repository: https://github.com/S1M0N38/semantic-encodings

33.Explainable Cost-Sensitive Deep Neural Networks for Brain Tumor Detection from Brain MRI Images considering Data Imbalance

Authors:Md Tanvir Rouf Shawon, G. M. Shahariar Shibli, Farzad Ahmed, Sajib Kumar Saha Joy

Abstract: This paper presents a research study on the use of Convolutional Neural Network (CNN), ResNet50, InceptionV3, EfficientNetB0 and NASNetMobile models to efficiently detect brain tumors in order to reduce the time required for manual review of the report and create an automated system for classifying brain tumors. An automated pipeline is proposed, which encompasses five models: CNN, ResNet50, InceptionV3, EfficientNetB0 and NASNetMobile. The performance of the proposed architecture is evaluated on a balanced dataset and found to yield an accuracy of 99.33% for fine-tuned InceptionV3 model. Furthermore, Explainable AI approaches are incorporated to visualize the model's latent behavior in order to understand its black box behavior. To further optimize the training process, a cost-sensitive neural network approach has been proposed in order to work with imbalanced datasets which has achieved almost 4% more accuracy than the conventional models used in our experiments. The cost-sensitive InceptionV3 (CS-InceptionV3) and CNN (CS-CNN) show a promising accuracy of 92.31% and a recall value of 1.00 respectively on an imbalanced dataset. The proposed models have shown great potential in improving tumor detection accuracy and must be further developed for application in practical solutions. We have provided the datasets and made our implementations publicly available at - https://github.com/shahariar-shibli/Explainable-Cost-Sensitive-Deep-Neural-Networks-for-Brain-Tumor-Detection-from-Brain-MRI-Images

34.NeRT: Implicit Neural Representations for General Unsupervised Turbulence Mitigation

Authors:Weiyun Jiang, Vivek Boominathan, Ashok Veeraraghavan

Abstract: The atmospheric and water turbulence mitigation problems have emerged as challenging inverse problems in computer vision and optics communities over the years. However, current methods either rely heavily on the quality of the training dataset or fail to generalize over various scenarios, such as static scenes, dynamic scenes, and text reconstructions. We propose a general implicit neural representation for unsupervised atmospheric and water turbulence mitigation (NeRT). NeRT leverages the implicit neural representations and the physically correct tilt-then-blur turbulence model to reconstruct the clean, undistorted image, given only dozens of distorted input images. Moreover, we show that NeRT outperforms the state-of-the-art through various qualitative and quantitative evaluations of atmospheric and water turbulence datasets. Furthermore, we demonstrate the ability of NeRT to eliminate uncontrolled turbulence from real-world environments. Lastly, we incorporate NeRT into continuously captured video sequences and demonstrate $48 \times$ speedup.

35.Human-M3: A Multi-view Multi-modal Dataset for 3D Human Pose Estimation in Outdoor Scenes

Authors:Bohao Fan, Siqi Wang, Wenzhao Zheng, Jianjiang Feng, Jie Zhou

Abstract: 3D human pose estimation in outdoor environments has garnered increasing attention recently. However, prevalent 3D human pose datasets pertaining to outdoor scenes lack diversity, as they predominantly utilize only one type of modality (RGB image or pointcloud), and often feature only one individual within each scene. This limited scope of dataset infrastructure considerably hinders the variability of available data. In this article, we propose Human-M3, an outdoor multi-modal multi-view multi-person human pose database which includes not only multi-view RGB videos of outdoor scenes but also corresponding pointclouds. In order to obtain accurate human poses, we propose an algorithm based on multi-modal data input to generate ground truth annotation. This benefits from robust pointcloud detection and tracking, which solves the problem of inaccurate human localization and matching ambiguity that may exist in previous multi-view RGB videos in outdoor multi-person scenes, and generates reliable ground truth annotations. Evaluation of multiple different modalities algorithms has shown that this database is challenging and suitable for future research. Furthermore, we propose a 3D human pose estimation algorithm based on multi-modal data input, which demonstrates the advantages of multi-modal data input for 3D human pose estimation. Code and data will be released on https://github.com/soullessrobot/Human-M3-Dataset.

36.Toward Zero-shot Character Recognition: A Gold Standard Dataset with Radical-level Annotations

Authors:Xiaolei Diao, Daqian Shi, Jian Li, Lida Shi, Mingzhe Yue, Ruihua Qi, Chuntao Li, Hao Xu

Abstract: Optical character recognition (OCR) methods have been applied to diverse tasks, e.g., street view text recognition and document analysis. Recently, zero-shot OCR has piqued the interest of the research community because it considers a practical OCR scenario with unbalanced data distribution. However, there is a lack of benchmarks for evaluating such zero-shot methods that apply a divide-and-conquer recognition strategy by decomposing characters into radicals. Meanwhile, radical recognition, as another important OCR task, also lacks radical-level annotation for model training. In this paper, we construct an ancient Chinese character image dataset that contains both radical-level and character-level annotations to satisfy the requirements of the above-mentioned methods, namely, ACCID, where radical-level annotations include radical categories, radical locations, and structural relations. To increase the adaptability of ACCID, we propose a splicing-based synthetic character algorithm to augment the training samples and apply an image denoising method to improve the image quality. By introducing character decomposition and recombination, we propose a baseline method for zero-shot OCR. The experimental results demonstrate the validity of ACCID and the baseline model quantitatively and qualitatively.

37.AnyLoc: Towards Universal Visual Place Recognition

Authors:Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula, Sebastian Scherer, Madhava Krishna, Sourav Garg

Abstract: Visual Place Recognition (VPR) is vital for robot localization. To date, the most performant VPR approaches are environment- and task-specific: while they exhibit strong performance in structured environments (predominantly urban driving), their performance degrades severely in unstructured environments, rendering most approaches brittle to robust real-world deployment. In this work, we develop a universal solution to VPR -- a technique that works across a broad range of structured and unstructured environments (urban, outdoors, indoors, aerial, underwater, and subterranean environments) without any re-training or fine-tuning. We demonstrate that general-purpose feature representations derived from off-the-shelf self-supervised models with no VPR-specific training are the right substrate upon which to build such a universal VPR solution. Combining these derived features with unsupervised feature aggregation enables our suite of methods, AnyLoc, to achieve up to 4X significantly higher performance than existing approaches. We further obtain a 6% improvement in performance by characterizing the semantic properties of these features, uncovering unique domains which encapsulate datasets from similar environments. Our detailed experiments and analysis lay a foundation for building VPR solutions that may be deployed anywhere, anytime, and across anyview. We encourage the readers to explore our project page and interactive demos: https://anyloc.github.io/.

38.LISA: Reasoning Segmentation via Large Language Model

Authors:Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, Jiaya Jia

Abstract: Although perception systems have made remarkable advancements in recent years, they still rely on explicit human instruction to identify the target objects or categories before executing visual recognition tasks. Such systems lack the ability to actively reason and comprehend implicit user intentions. In this work, we propose a new segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text. Furthermore, we establish a benchmark comprising over one thousand image-instruction pairs, incorporating intricate reasoning and world knowledge for evaluation purposes. Finally, we present LISA: large Language Instructed Segmentation Assistant, which inherits the language generation capabilities of the multi-modal Large Language Model (LLM) while also possessing the ability to produce segmentation masks. We expand the original vocabulary with a <SEG> token and propose the embedding-as-mask paradigm to unlock the segmentation capability. Remarkably, LISA can handle cases involving: 1) complex reasoning; 2) world knowledge; 3) explanatory answers; 4) multi-turn conversation. Also, it demonstrates robust zero-shot capability when trained exclusively on reasoning-free datasets. In addition, fine-tuning the model with merely 239 reasoning segmentation image-instruction pairs results in further performance enhancement. Experiments show our method not only unlocks new reasoning segmentation capabilities but also proves effective in both complex reasoning segmentation and standard referring segmentation tasks. Code, models, and demo are at https://github.com/dvlab-research/LISA.