arXiv daily

Computer Vision and Pattern Recognition (cs.CV)

Fri, 05 May 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.BadSAM: Exploring Security Vulnerabilities of SAM via Backdoor Attacks

Authors:Zihan Guan, Mengxuan Hu, Zhongliang Zhou, Jielu Zhang, Sheng Li, Ninghao Liu

Abstract: Recently, the Segment Anything Model (SAM) has gained significant attention as an image segmentation foundation model due to its strong performance on various downstream tasks. However, it has been found that SAM does not always perform satisfactorily when faced with challenging downstream tasks. This has led downstream users to demand a customized SAM model that can be adapted to these downstream tasks. In this paper, we present BadSAM, the first backdoor attack on the image segmentation foundation model. Our preliminary experiments on the CAMO dataset demonstrate the effectiveness of BadSAM.

2.High-Fidelity 3D Face Generation from Natural Language Descriptions

Authors:Menghua Wu, Hao Zhu, Linjia Huang, Yiyu Zhuang, Yuanxun Lu, Xun Cao

Abstract: Synthesizing high-quality 3D face models from natural language descriptions is very valuable for many applications, including avatar creation, virtual reality, and telepresence. However, little research ever tapped into this task. We argue the major obstacle lies in 1) the lack of high-quality 3D face data with descriptive text annotation, and 2) the complex mapping relationship between descriptive language space and shape/appearance space. To solve these problems, we build Describe3D dataset, the first large-scale dataset with fine-grained text descriptions for text-to-3D face generation task. Then we propose a two-stage framework to first generate a 3D face that matches the concrete descriptions, then optimize the parameters in the 3D shape and texture space with abstract description to refine the 3D face model. Extensive experimental results show that our method can produce a faithful 3D face that conforms to the input descriptions with higher accuracy and quality than previous methods. The code and Describe3D dataset are released at https://github.com/zhuhao-nju/describe3d .

3.FlowText: Synthesizing Realistic Scene Text Video with Optical Flow Estimation

Authors:Yuzhong Zhao, Weijia Wu, Zhuang Li, Jiahong Li, Weiqiang Wang

Abstract: Current video text spotting methods can achieve preferable performance, powered with sufficient labeled training data. However, labeling data manually is time-consuming and labor-intensive. To overcome this, using low-cost synthetic data is a promising alternative. This paper introduces a novel video text synthesis technique called FlowText, which utilizes optical flow estimation to synthesize a large amount of text video data at a low cost for training robust video text spotters. Unlike existing methods that focus on image-level synthesis, FlowText concentrates on synthesizing temporal information of text instances across consecutive frames using optical flow. This temporal information is crucial for accurately tracking and spotting text in video sequences, including text movement, distortion, appearance, disappearance, shelter, and blur. Experiments show that combining general detectors like TransDETR with the proposed FlowText produces remarkable results on various datasets, such as ICDAR2015video and ICDAR2013video. Code is available at https://github.com/callsys/FlowText.

4.LOGO-Former: Local-Global Spatio-Temporal Transformer for Dynamic Facial Expression Recognition

Authors:Fuyan Ma, Bin Sun, Shutao Li

Abstract: Previous methods for dynamic facial expression recognition (DFER) in the wild are mainly based on Convolutional Neural Networks (CNNs), whose local operations ignore the long-range dependencies in videos. Transformer-based methods for DFER can achieve better performances but result in higher FLOPs and computational costs. To solve these problems, the local-global spatio-temporal Transformer (LOGO-Former) is proposed to capture discriminative features within each frame and model contextual relationships among frames while balancing the complexity. Based on the priors that facial muscles move locally and facial expressions gradually change, we first restrict both the space attention and the time attention to a local window to capture local interactions among feature tokens. Furthermore, we perform the global attention by querying a token with features from each local window iteratively to obtain long-range information of the whole video sequence. In addition, we propose the compact loss regularization term to further encourage the learned features have the minimum intra-class distance and the maximum inter-class distance. Experiments on two in-the-wild dynamic facial expression datasets (i.e., DFEW and FERV39K) indicate that our method provides an effective way to make use of the spatial and temporal dependencies for DFER.

5.A Large Cross-Modal Video Retrieval Dataset with Reading Comprehension

Authors:Weijia Wu, Yuzhong Zhao, Zhuang Li, Jiahong Li, Hong Zhou, Mike Zheng Shou, Xiang Bai

Abstract: Most existing cross-modal language-to-video retrieval (VR) research focuses on single-modal input from video, i.e., visual representation, while the text is omnipresent in human environments and frequently critical to understand video. To study how to retrieve video with both modal inputs, i.e., visual and text semantic representations, we first introduce a large-scale and cross-modal Video Retrieval dataset with text reading comprehension, TextVR, which contains 42.2k sentence queries for 10.5k videos of 8 scenario domains, i.e., Street View (indoor), Street View (outdoor), Games, Sports, Driving, Activity, TV Show, and Cooking. The proposed TextVR requires one unified cross-modal model to recognize and comprehend texts, relate them to the visual context, and decide what text semantic information is vital for the video retrieval task. Besides, we present a detailed analysis of TextVR compared to the existing datasets and design a novel multimodal video retrieval baseline for the text-based video retrieval task. The dataset analysis and extensive experiments show that our TextVR benchmark provides many new technical challenges and insights from previous datasets for the video-and-language community. The project website and GitHub repo can be found at https://sites.google.com/view/loveucvpr23/guest-track and https://github.com/callsys/TextVR, respectively.

6.Leaf Cultivar Identification via Prototype-enhanced Learning

Authors:Yiyi Zhang, Zhiwen Ying, Ying Zheng, Cuiling Wu, Nannan Li, Jun Wang, Xianzhong Feng, Xiaogang Xu

Abstract: Plant leaf identification is crucial for biodiversity protection and conservation and has gradually attracted the attention of academia in recent years. Due to the high similarity among different varieties, leaf cultivar recognition is also considered to be an ultra-fine-grained visual classification (UFGVC) task, which is facing a huge challenge. In practice, an instance may be related to multiple varieties to varying degrees, especially in the UFGVC datasets. However, deep learning methods trained on one-hot labels fail to reflect patterns shared across categories and thus perform poorly on this task. To address this issue, we generate soft targets integrated with inter-class similarity information. Specifically, we continuously update the prototypical features for each category and then capture the similarity scores between instances and prototypes accordingly. Original one-hot labels and the similarity scores are incorporated to yield enhanced labels. Prototype-enhanced soft labels not only contain original one-hot label information, but also introduce rich inter-category semantic association information, thus providing more effective supervision for deep model training. Extensive experimental results on public datasets show that our method can significantly improve the performance on the UFGVC task of leaf cultivar identification.

7.Contrastive Learning for Low-light Raw Denoising

Authors:Taoyong Cui, Yuhan Dong

Abstract: Image/video denoising in low-light scenes is an extremely challenging problem due to limited photon count and high noise. In this paper, we propose a novel approach with contrastive learning to address this issue. Inspired by the success of contrastive learning used in some high-level computer vision tasks, we bring in this idea to the low-level denoising task. In order to achieve this goal, we introduce a new denoising contrastive regularization (DCR) to exploit the information of noisy images and clean images. In the feature space, DCR makes the denoised image closer to the clean image and far away from the noisy image. In addition, we build a new feature embedding network called Wnet, which is more effective to extract high-frequency information. We conduct the experiments on a real low-light dataset that captures still images taken on a moonless clear night in 0.6 millilux and videos under starlight (no moon present, <0.001 lux). The results show that our method can achieve a higher PSNR and better visual quality compared with existing methods

8.DisenBooth: Disentangled Parameter-Efficient Tuning for Subject-Driven Text-to-Image Generation

Authors:Hong Chen, Yipeng Zhang, Xin Wang, Xuguang Duan, Yuwei Zhou, Wenwu Zhu

Abstract: Given a small set of images of a specific subject, subject-driven text-to-image generation aims to generate customized images of the subject according to new text descriptions, which has attracted increasing attention in the community recently. Current subject-driven text-to-image generation methods are mainly based on finetuning a pretrained large-scale text-to-image generation model. However, these finetuning methods map the images of the subject into an embedding highly entangled with subject-identity-unrelated information, which may result in the inconsistency between the generated images and the text descriptions and the changes in the subject identity. To tackle the problem, we propose DisenBooth, a disentangled parameter-efficient tuning framework for subject-driven text-to-image generation. DisenBooth enables generating new images that simultaneously preserve the subject identity and conform to the text descriptions, by disentangling the embedding into an identity-related and an identity-unrelated part. Specifically, DisenBooth is based on the pretrained diffusion models and conducts finetuning in the diffusion denoising process, where a shared identity embedding and an image-specific identity-unrelated embedding are utilized jointly for denoising each image. To make the two embeddings disentangled, two auxiliary objectives are proposed. Additionally, to improve the finetuning efficiency, a parameter-efficient finetuning strategy is adopted. Extensive experiments show that our DisenBooth can faithfully learn well-disentangled identity-related and identity-unrelated embeddings. With the shared identity embedding, DisenBooth demonstrates superior subject-driven text-to-image generation ability. Additionally, DisenBooth provides a more flexible and controllable framework with different combinations of the disentangled embeddings.

9.Towards Effective Collaborative Learning in Long-Tailed Recognition

Authors:Zhengzhuo Xu, Zenghao Chai, Chengyin Xu, Chun Yuan, Haiqin Yang

Abstract: Real-world data usually suffers from severe class imbalance and long-tailed distributions, where minority classes are significantly underrepresented compared to the majority ones. Recent research prefers to utilize multi-expert architectures to mitigate the model uncertainty on the minority, where collaborative learning is employed to aggregate the knowledge of experts, i.e., online distillation. In this paper, we observe that the knowledge transfer between experts is imbalanced in terms of class distribution, which results in limited performance improvement of the minority classes. To address it, we propose a re-weighted distillation loss by comparing two classifiers' predictions, which are supervised by online distillation and label annotations, respectively. We also emphasize that feature-level distillation will significantly improve model performance and increase feature robustness. Finally, we propose an Effective Collaborative Learning (ECL) framework that integrates a contrastive proxy task branch to further improve feature quality. Quantitative and qualitative experiments on four standard datasets demonstrate that ECL achieves state-of-the-art performance and the detailed ablation studies manifest the effectiveness of each component in ECL.

10.Guided Image Synthesis via Initial Image Editing in Diffusion Model

Authors:Jiafeng Mao, Xueting Wang, Kiyoharu Aizawa

Abstract: Diffusion models have the ability to generate high quality images by denoising pure Gaussian noise images. While previous research has primarily focused on improving the control of image generation through adjusting the denoising process, we propose a novel direction of manipulating the initial noise to control the generated image. Through experiments on stable diffusion, we show that blocks of pixels in the initial latent images have a preference for generating specific content, and that modifying these blocks can significantly influence the generated image. In particular, we show that modifying a part of the initial image affects the corresponding region of the generated image while leaving other regions unaffected, which is useful for repainting tasks. Furthermore, we find that the generation preferences of pixel blocks are primarily determined by their values, rather than their position. By moving pixel blocks with a tendency to generate user-desired content to user-specified regions, our approach achieves state-of-the-art performance in layout-to-image generation. Our results highlight the flexibility and power of initial image manipulation in controlling the generated image.

11.Optimized Table Tokenization for Table Structure Recognition

Authors:Maksym Lysak, Ahmed Nassar, Nikolaos Livathinos, Christoph Auer, Peter Staar

Abstract: Extracting tables from documents is a crucial task in any document conversion pipeline. Recently, transformer-based models have demonstrated that table-structure can be recognized with impressive accuracy using Image-to-Markup-Sequence (Im2Seq) approaches. Taking only the image of a table, such models predict a sequence of tokens (e.g. in HTML, LaTeX) which represent the structure of the table. Since the token representation of the table structure has a significant impact on the accuracy and run-time performance of any Im2Seq model, we investigate in this paper how table-structure representation can be optimised. We propose a new, optimised table-structure language (OTSL) with a minimized vocabulary and specific rules. The benefits of OTSL are that it reduces the number of tokens to 5 (HTML needs 28+) and shortens the sequence length to half of HTML on average. Consequently, model accuracy improves significantly, inference time is halved compared to HTML-based models, and the predicted table structures are always syntactically correct. This in turn eliminates most post-processing needs.

12.Evolution under Length Constraints for CNN Architecture design

Authors:Ousmane Youme, Jean Marie Dembele, Eugene C. Ezin, Christophe Cambier

Abstract: In recent years, the CNN architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on genetic algorithm to find the best individual in the optimal space. Our algorithms reduce drastically resource cost and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.

13.GAANet: Ghost Auto Anchor Network for Detecting Varying Size Drones in Dark

Authors:Misha Urooj Khan, Maham Misbah, Zeeshan Kaleem, Yansha Deng, Abbas Jamalipour

Abstract: The usage of drones has tremendously increased in different sectors spanning from military to industrial applications. Despite all the benefits they offer, their misuse can lead to mishaps, and tackling them becomes more challenging particularly at night due to their small size and low visibility conditions. To overcome those limitations and improve the detection accuracy at night, we propose an object detector called Ghost Auto Anchor Network (GAANet) for infrared (IR) images. The detector uses a YOLOv5 core to address challenges in object detection for IR images, such as poor accuracy and a high false alarm rate caused by extended altitudes, poor lighting, and low image resolution. To improve performance, we implemented auto anchor calculation, modified the conventional convolution block to ghost-convolution, adjusted the input channel size, and used the AdamW optimizer. To enhance the precision of multiscale tiny object recognition, we also introduced an additional extra-small object feature extractor and detector. Experimental results in a custom IR dataset with multiple classes (birds, drones, planes, and helicopters) demonstrate that GAANet shows improvement compared to state-of-the-art detectors. In comparison to GhostNet-YOLOv5, GAANet has higher overall mean average precision (mAP@50), recall, and precision around 2.5\%, 2.3\%, and 1.4\%, respectively. The dataset and code for this paper are available as open source at https://github.com/ZeeshanKaleem/GhostAutoAnchorNet.

14.General Neural Gauge Fields

Authors:Fangneng Zhan, Lingjie Liu, Adam Kortylewski, Christian Theobalt

Abstract: The recent advance of neural fields, such as neural radiance fields, has significantly pushed the boundary of scene representation learning. Aiming to boost the computation efficiency and rendering quality of 3D scenes, a popular line of research maps the 3D coordinate system to another measuring system, e.g., 2D manifolds and hash tables, for modeling neural fields. The conversion of coordinate systems can be typically dubbed as gauge transformation, which is usually a pre-defined mapping function, e.g., orthogonal projection or spatial hash function. This begs a question: can we directly learn a desired gauge transformation along with the neural field in an end-to-end manner? In this work, we extend this problem to a general paradigm with a taxonomy of discrete & continuous cases, and develop an end-to-end learning framework to jointly optimize the gauge transformation and neural fields. To counter the problem that the learning of gauge transformations can collapse easily, we derive a general regularization mechanism from the principle of information conservation during the gauge transformation. To circumvent the high computation cost in gauge learning with regularization, we directly derive an information-invariant gauge transformation which allows to preserve scene information inherently and yield superior performance.

15.HD2Reg: Hierarchical Descriptors and Detectors for Point Cloud Registration

Authors:Canhui Tang, Yiheng Li, Shaoyi Du, Guofa Wang, Zhiqiang Tian

Abstract: Feature Descriptors and Detectors are two main components of feature-based point cloud registration. However, little attention has been drawn to the explicit representation of local and global semantics in the learning of descriptors and detectors. In this paper, we present a framework that explicitly extracts dual-level descriptors and detectors and performs coarse-to-fine matching with them. First, to explicitly learn local and global semantics, we propose a hierarchical contrastive learning strategy, training the robust matching ability of high-level descriptors, and refining the local feature space using low-level descriptors. Furthermore, we propose to learn dual-level saliency maps that extract two groups of keypoints in two different senses. To overcome the weak supervision of binary matchability labels, we propose a ranking strategy to label the significance ranking of keypoints, and thus provide more fine-grained supervision signals. Finally, we propose a global-to-local matching scheme to obtain robust and accurate correspondences by leveraging the complementary dual-level features.Quantitative experiments on 3DMatch and KITTI odometry datasets show that our method achieves robust and accurate point cloud registration and outperforms recent keypoint-based methods.

16.High-Level Context Representation for Emotion Recognition in Images

Authors:Willams de Lima Costa, Estefania Talavera Martinez, Lucas Silva Figueiredo, Veronica Teichrieb

Abstract: Emotion recognition is the task of classifying perceived emotions in people. Previous works have utilized various nonverbal cues to extract features from images and correlate them to emotions. Of these cues, situational context is particularly crucial in emotion perception since it can directly influence the emotion of a person. In this paper, we propose an approach for high-level context representation extraction from images. The model relies on a single cue and a single encoding stream to correlate this representation with emotions. Our model competes with the state-of-the-art, achieving an mAP of 0.3002 on the EMOTIC dataset while also being capable of execution on consumer-grade hardware at approximately 90 frames per second. Overall, our approach is more efficient than previous models and can be easily deployed to address real-world problems related to emotion recognition.

17.Next-generation Surgical Navigation: Multi-view Marker-less 6DoF Pose Estimation of Surgical Instruments

Authors:Jonas Hein, Nicola Cavalcanti, Daniel Suter, Lukas Zingg, Fabio Carrillo, Mazda Farshad, Marc Pollefeys, Nassir Navab, Philipp Fürnstahl

Abstract: State-of-the-art research of traditional computer vision is increasingly leveraged in the surgical domain. A particular focus in computer-assisted surgery is to replace marker-based tracking systems for instrument localization with pure image-based 6DoF pose estimation. However, the state of the art has not yet met the accuracy required for surgical navigation. In this context, we propose a high-fidelity marker-less optical tracking system for surgical instrument localization. We developed a multi-view camera setup consisting of static and mobile cameras and collected a large-scale RGB-D video dataset with dedicated synchronization and data fusions methods. Different state-of-the-art pose estimation methods were integrated into a deep learning pipeline and evaluated on multiple camera configurations. Furthermore, the performance impacts of different input modalities and camera positions, as well as training on purely synthetic data, were compared. The best model achieved an average position and orientation error of 1.3 mm and 1.0{\deg} for a surgical drill as well as 3.8 mm and 5.2{\deg} for a screwdriver. These results significantly outperform related methods in the literature and are close to clinical-grade accuracy, demonstrating that marker-less tracking of surgical instruments is becoming a feasible alternative to existing marker-based systems.

18.HSCNet++: Hierarchical Scene Coordinate Classification and Regression for Visual Localization with Transformer

Authors:Shuzhe Wang, Zakaria Laskar, Iaroslav Melekhov, Xiaotian Li, Yi Zhao, Giorgos Tolias, Juho Kannala

Abstract: Visual localization is critical to many applications in computer vision and robotics. To address single-image RGB localization, state-of-the-art feature-based methods match local descriptors between a query image and a pre-built 3D model. Recently, deep neural networks have been exploited to regress the mapping between raw pixels and 3D coordinates in the scene, and thus the matching is implicitly performed by the forward pass through the network. However, in a large and ambiguous environment, learning such a regression task directly can be difficult for a single network. In this work, we present a new hierarchical scene coordinate network to predict pixel scene coordinates in a coarse-to-fine manner from a single RGB image. The proposed method, which is an extension of HSCNet, allows us to train compact models which scale robustly to large environments. It sets a new state-of-the-art for single-image localization on the 7-Scenes, 12 Scenes, Cambridge Landmarks datasets, and the combined indoor scenes.

19.Human Attention-Guided Explainable Artificial Intelligence for Computer Vision Models

Authors:Guoyang Liu, Jindi Zhang, Antoni B. Chan, Janet H. Hsiao

Abstract: We examined whether embedding human attention knowledge into saliency-based explainable AI (XAI) methods for computer vision models could enhance their plausibility and faithfulness. We first developed new gradient-based XAI methods for object detection models to generate object-specific explanations by extending the current methods for image classification models. Interestingly, while these gradient-based methods worked well for explaining image classification models, when being used for explaining object detection models, the resulting saliency maps generally had lower faithfulness than human attention maps when performing the same task. We then developed Human Attention-Guided XAI (HAG-XAI) to learn from human attention how to best combine explanatory information from the models to enhance explanation plausibility by using trainable activation functions and smoothing kernels to maximize XAI saliency map's similarity to human attention maps. While for image classification models, HAG-XAI enhanced explanation plausibility at the expense of faithfulness, for object detection models it enhanced plausibility and faithfulness simultaneously and outperformed existing methods. The learned functions were model-specific, well generalizable to other databases.

20.A Dual Semantic-Aware Recurrent Global-Adaptive Network For Vision-and-Language Navigation

Authors:Liuyi Wang, Zongtao He, Jiagui Tang, Ronghao Dang, Naijia Wang, Chengju Liu, Qijun Chen

Abstract: Vision-and-Language Navigation (VLN) is a realistic but challenging task that requires an agent to locate the target region using verbal and visual cues. While significant advancements have been achieved recently, there are still two broad limitations: (1) The explicit information mining for significant guiding semantics concealed in both vision and language is still under-explored; (2) The previously structured map method provides the average historical appearance of visited nodes, while it ignores distinctive contributions of various images and potent information retention in the reasoning process. This work proposes a dual semantic-aware recurrent global-adaptive network (DSRG) to address the above problems. First, DSRG proposes an instruction-guidance linguistic module (IGL) and an appearance-semantics visual module (ASV) for boosting vision and language semantic learning respectively. For the memory mechanism, a global adaptive aggregation module (GAA) is devised for explicit panoramic observation fusion, and a recurrent memory fusion module (RMF) is introduced to supply implicit temporal hidden states. Extensive experimental results on the R2R and REVERIE datasets demonstrate that our method achieves better performance than existing methods.

21.Data Curation for Image Captioning with Text-to-Image Generative Models

Authors:Wenyan Li, Jonas F. Lotz, Chen Qiu, Desmond Elliott

Abstract: Recent advances in image captioning are mainly driven by large-scale vision-language pretraining, relying heavily on computational resources and increasingly large multimodal datasets. Instead of scaling up pretraining data, we ask whether it is possible to improve performance by improving the quality of the samples in existing datasets. We pursue this question through two approaches to data curation: one that assumes that some examples should be avoided due to mismatches between the image and caption, and one that assumes that the mismatch can be addressed by replacing the image, for which we use the state-of-the-art Stable Diffusion model. These approaches are evaluated using the BLIP model on MS COCO and Flickr30K in both finetuning and few-shot learning settings. Our simple yet effective approaches consistently outperform baselines, indicating that better image captioning models can be trained by curating existing resources. Finally, we conduct a human study to understand the errors made by the Stable Diffusion model and highlight directions for future work in text-to-image generation.

22.Conditional Diffusion Feature Refinement for Continuous Sign Language Recognition

Authors:Leming Guo, Wanli Xue, Qing Guo, Yuxi Zhou, Tiantian Yuan, Shengyong Chen

Abstract: In this work, we are dedicated to leveraging the denoising diffusion models' success and formulating feature refinement as the autoencoder-formed diffusion process. The state-of-the-art CSLR framework consists of a spatial module, a visual module, a sequence module, and a sequence learning function. However, this framework has faced sequence module overfitting caused by the objective function and small-scale available benchmarks, resulting in insufficient model training. To overcome the overfitting problem, some CSLR studies enforce the sequence module to learn more visual temporal information or be guided by more informative supervision to refine its representations. In this work, we propose a novel autoencoder-formed conditional diffusion feature refinement~(ACDR) to refine the sequence representations to equip desired properties by learning the encoding-decoding optimization process in an end-to-end way. Specifically, for the ACDR, a noising Encoder is proposed to progressively add noise equipped with semantic conditions to the sequence representations. And a denoising Decoder is proposed to progressively denoise the noisy sequence representations with semantic conditions. Therefore, the sequence representations can be imbued with the semantics of provided semantic conditions. Further, a semantic constraint is employed to prevent the denoised sequence representations from semantic corruption. Extensive experiments are conducted to validate the effectiveness of our ACDR, benefiting state-of-the-art methods and achieving a notable gain on three benchmarks.

23.Asynchronous Events-based Panoptic Segmentation using Graph Mixer Neural Network

Authors:Sanket Kachole, Yusra Alkendi, Fariborz Baghaei Naeini, Dimitrios Makris, Yahya Zweiri

Abstract: In the context of robotic grasping, object segmentation encounters several difficulties when faced with dynamic conditions such as real-time operation, occlusion, low lighting, motion blur, and object size variability. In response to these challenges, we propose the Graph Mixer Neural Network that includes a novel collaborative contextual mixing layer, applied to 3D event graphs formed on asynchronous events. The proposed layer is designed to spread spatiotemporal correlation within an event graph at four nearest neighbor levels parallelly. We evaluate the effectiveness of our proposed method on the Event-based Segmentation (ESD) Dataset, which includes five unique image degradation challenges, including occlusion, blur, brightness, trajectory, scale variance, and segmentation of known and unknown objects. The results show that our proposed approach outperforms state-of-the-art methods in terms of mean intersection over the union and pixel accuracy. Code available at: https://github.com/sanket0707/GNN-Mixer.git

24.COLA: How to adapt vision-language models to Compose Objects Localized with Attributes?

Authors:Arijit Ray, Filip Radenovic, Abhimanyu Dubey, Bryan A. Plummer, Ranjay Krishna, Kate Saenko

Abstract: Compositional reasoning is a hallmark of human visual intelligence; yet despite the size of large vision-language models, they struggle to represent simple compositions by combining objects with their attributes. To measure this lack of compositional capability, we design Cola, a text-to-image retrieval benchmark to Compose Objects Localized with Attributes. Using Cola as a testbed, we explore modeling designs to adapt pre-trained vision-language models to reason compositionally about multiple attributes attached to multiple objects. We explore 6 finetuning strategies on 2 seminal vision-language models, using 3 finetuning datasets and 2 test benchmarks (Cola and CREPE). Surprisingly, our optimal finetuning strategy improves a 151M parameter CLIP, which disjointly encodes image and language during pretraining, to perform as well as a 241M parameter FLAVA, which uses a multi-modal transformer encoder during pretraining to attend over both vision and language modalities. This optimal finetuning strategy is a lightweight multi-modal adapter that jointly attends over both image and language features generated by the pretrained model. We show this works better than common strategies such as prompt/fine-tuning, or tuning a comparable number of unimodal layers.

25.LMEye: An Interactive Perception Network for Large Language Models

Authors:Yunxin Li, Baotian Hu, Xinyu Chen, Lin Ma, Min Zhang

Abstract: Training a Large Visual Language Model (LVLM) from scratch, like GPT-4, is resource-intensive. Our paper proposes an alternative method called LMEye, a play-plug-in Interactive Perception Network for Large Language Models (LLMs), aiming to improve the accuracy of image understanding for the LVLM. Previous methods that infuse visual information into LLMs utilize a static visual mapping network, but lack dynamic interaction between the LLMs and visual information. LMEye addresses this issue by allowing the LLM to incorporate the visual information that aligned with human instruction. Specifically, the LMEye network consists of a static visual mapping network to provide the basic perception of an image to LLMs. Then, it also contains additional linear layers responsible for acquiring requests from LLMs, decomposing image features, and transmitting the interleaved information to LLMs, respectively. In this way, LLMs act to be in charge of understanding human instructions, sending it to the interactive perception network, and generating the response based on the interleaved multimodal information. We evaluate LMEye through extensive experiments on multimodal question answering and reasoning tasks, demonstrating that it significantly improves the zero-shot performance of LLMs on multimodal tasks compared to previous methods.

26.Fine-Grained Product Classification on Leaflet Advertisements

Authors:Daniel Ladwig IMLA, Offenburg University, Bianca Lamm IMLA, Offenburg University Markant Services International GmbH, Janis Keuper Markant Services International GmbH

Abstract: In this paper, we describe a first publicly available fine-grained product recognition dataset based on leaflet images. Using advertisement leaflets, collected over several years from different European retailers, we provide a total of 41.6k manually annotated product images in 832 classes. Further, we investigate three different approaches for this fine-grained product classification task, Classification by Image, by Text, as well as by Image and Text. The approach "Classification by Text" uses the text extracted directly from the leaflet product images. We show, that the combination of image and text as input improves the classification of visual difficult to distinguish products. The final model leads to an accuracy of 96.4% with a Top-3 score of 99.2%. We release our code at https://github.com/ladwigd/Leaflet-Product-Classification.

27.Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos

Authors:Ekta Prashnani, Koki Nagano, Shalini De Mello, David Luebke, Orazio Gallo

Abstract: Modern generators render talking-head videos with impressive levels of photorealism, ushering in new user experiences such as videoconferencing under constrained bandwidth budgets. Their safe adoption, however, requires a mechanism to verify if the rendered video is trustworthy. For instance, for videoconferencing we must identify cases in which a synthetic video portrait uses the appearance of an individual without their consent. We term this task avatar fingerprinting. We propose to tackle it by leveraging facial motion signatures unique to each person. Specifically, we learn an embedding in which the motion signatures of one identity are grouped together, and pushed away from those of other identities, regardless of the appearance in the synthetic video. Avatar fingerprinting algorithms will be critical as talking head generators become more ubiquitous, and yet no large scale datasets exist for this new task. Therefore, we contribute a large dataset of people delivering scripted and improvised short monologues, accompanied by synthetic videos in which we render videos of one person using the facial appearance of another. Project page: https://research.nvidia.com/labs/nxp/avatar-fingerprinting/.

28.DSPDet3D: Dynamic Spatial Pruning for 3D Small Object Detection

Authors:Xiuwei Xu, Zhihao Sun, Ziwei Wang, Hongmin Liu, Jie Zhou, Jiwen Lu

Abstract: In this paper, we propose a new detection framework for 3D small object detection. Although deep learning-based 3D object detection methods have achieved great success in recent years, current methods still struggle on small objects due to weak geometric information. With in-depth study, we find increasing the spatial resolution of the feature maps significantly boosts the performance of 3D small object detection. And more interestingly, though the computational overhead increases dramatically with resolution, the growth mainly comes from the upsampling operation of the decoder. Inspired by this, we present a high-resolution multi-level detector with dynamic spatial pruning named DSPDet3D, which detects objects from large to small by iterative upsampling and meanwhile prunes the spatial representation of the scene at regions where there is no smaller object to be detected in higher resolution. As the 3D detector only needs to predict sparse bounding boxes, pruning a large amount of uninformative features does not degrade the detection performance but significantly reduces the computational cost of upsampling. In this way, our DSPDet3D achieves high accuracy on small object detection while requiring even less memory footprint and inference time. On ScanNet and TO-SCENE dataset, our method improves the detection performance of small objects to a new level while achieving leading inference speed among all mainstream indoor 3D object detection methods.

29.DualCross: Cross-Modality Cross-Domain Adaptation for Monocular BEV Perception

Authors:Yunze Man, Liang-Yan Gui, Yu-Xiong Wang

Abstract: Closing the domain gap between training and deployment and incorporating multiple sensor modalities are two challenging yet critical topics for self-driving. Existing work only focuses on single one of the above topics, overlooking the simultaneous domain and modality shift which pervasively exists in real-world scenarios. A model trained with multi-sensor data collected in Europe may need to run in Asia with a subset of input sensors available. In this work, we propose DualCross, a cross-modality cross-domain adaptation framework to facilitate the learning of a more robust monocular bird's-eye-view (BEV) perception model, which transfers the point cloud knowledge from a LiDAR sensor in one domain during the training phase to the camera-only testing scenario in a different domain. This work results in the first open analysis of cross-domain cross-sensor perception and adaptation for monocular 3D tasks in the wild. We benchmark our approach on large-scale datasets under a wide range of domain shifts and show state-of-the-art results against various baselines.

30.Otter: A Multi-Modal Model with In-Context Instruction Tuning

Authors:Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, Ziwei Liu

Abstract: Large language models (LLMs) have demonstrated significant universal capabilities as few/zero-shot learners in various tasks due to their pre-training on vast amounts of text data, as exemplified by GPT-3, which boosted to InstrctGPT and ChatGPT, effectively following natural language instructions to accomplish real-world tasks. In this paper, we propose to introduce instruction tuning into multi-modal models, motivated by the Flamingo model's upstream interleaved format pretraining dataset. We adopt a similar approach to construct our MultI-Modal In-Context Instruction Tuning (MIMIC-IT) dataset. We then introduce Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following ability and in-context learning. We also optimize OpenFlamingo's implementation for researchers, democratizing the required training resources from 1$\times$ A100 GPU to 4$\times$ RTX-3090 GPUs, and integrate both OpenFlamingo and Otter into Huggingface Transformers for more researchers to incorporate the models into their customized training and inference pipelines.