Computer Vision and Pattern Recognition (cs.CV)
Tue, 11 Jul 2023
1.Test-Time Training on Video Streams
Authors:Renhao Wang, Yu Sun, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang
Abstract: Prior work has established test-time training (TTT) as a general framework to further improve a trained model at test time. Before making a prediction on each test instance, the model is trained on the same instance using a self-supervised task, such as image reconstruction with masked autoencoders. We extend TTT to the streaming setting, where multiple test instances - video frames in our case - arrive in temporal order. Our extension is online TTT: The current model is initialized from the previous model, then trained on the current frame and a small window of frames immediately before. Online TTT significantly outperforms the fixed-model baseline for four tasks, on three real-world datasets. The relative improvement is 45% and 66% for instance and panoptic segmentation. Surprisingly, online TTT also outperforms its offline variant that accesses more information, training on all frames from the entire test video regardless of temporal order. This differs from previous findings using synthetic videos. We conceptualize locality as the advantage of online over offline TTT. We analyze the role of locality with ablations and a theory based on bias-variance trade-off.
2.TRansPose: Large-Scale Multispectral Dataset for Transparent Object
Authors:Jeongyun Kim, Myung-Hwan Jeon, Sangwoo Jung, Wooseong Yang, Minwoo Jung, Jaeho Shin, Ayoung Kim
Abstract: Transparent objects are encountered frequently in our daily lives, yet recognizing them poses challenges for conventional vision sensors due to their unique material properties, not being well perceived from RGB or depth cameras. Overcoming this limitation, thermal infrared cameras have emerged as a solution, offering improved visibility and shape information for transparent objects. In this paper, we present TRansPose, the first large-scale multispectral dataset that combines stereo RGB-D, thermal infrared (TIR) images, and object poses to promote transparent object research. The dataset includes 99 transparent objects, encompassing 43 household items, 27 recyclable trashes, 29 chemical laboratory equivalents, and 12 non-transparent objects. It comprises a vast collection of 333,819 images and 4,000,056 annotations, providing instance-level segmentation masks, ground-truth poses, and completed depth information. The data was acquired using a FLIR A65 thermal infrared (TIR) camera, two Intel RealSense L515 RGB-D cameras, and a Franka Emika Panda robot manipulator. Spanning 87 sequences, TRansPose covers various challenging real-life scenarios, including objects filled with water, diverse lighting conditions, heavy clutter, non-transparent or translucent containers, objects in plastic bags, and multi-stacked objects. TRansPose dataset can be accessed from the following link: https://sites.google.com/view/transpose-dataset
3.Feature Activation Map: Visual Explanation of Deep Learning Models for Image Classification
Authors:Yi Liao, Yongsheng Gao, Weichuan Zhang
Abstract: Decisions made by convolutional neural networks(CNN) can be understood and explained by visualizing discriminative regions on images. To this end, Class Activation Map (CAM) based methods were proposed as powerful interpretation tools, making the prediction of deep learning models more explainable, transparent, and trustworthy. However, all the CAM-based methods (e.g., CAM, Grad-CAM, and Relevance-CAM) can only be used for interpreting CNN models with fully-connected (FC) layers as a classifier. It is worth noting that many deep learning models classify images without FC layers, e.g., few-shot learning image classification, contrastive learning image classification, and image retrieval tasks. In this work, a post-hoc interpretation tool named feature activation map (FAM) is proposed, which can interpret deep learning models without FC layers as a classifier. In the proposed FAM algorithm, the channel-wise contribution weights are derived from the similarity scores between two image embeddings. The activation maps are linearly combined with the corresponding normalized contribution weights, forming the explanation map for visualization. The quantitative and qualitative experiments conducted on ten deep learning models for few-shot image classification, contrastive learning image classification and image retrieval tasks demonstrate the effectiveness of the proposed FAM algorithm.
4.Towards Anytime Optical Flow Estimation with Event Cameras
Authors:Yaozu Ye, Hao Shi, Kailun Yang, Ze Wang, Xiaoting Yin, Yaonan Wang, Kaiwei Wang
Abstract: Event cameras are capable of responding to log-brightness changes in microseconds. Its characteristic of producing responses only to the changing region is particularly suitable for optical flow estimation. In contrast to the super low-latency response speed of event cameras, existing datasets collected via event cameras, however, only provide limited frame rate optical flow ground truth, (e.g., at 10Hz), greatly restricting the potential of event-driven optical flow. To address this challenge, we put forward a high-frame-rate, low-latency event representation Unified Voxel Grid, sequentially fed into the network bin by bin. We then propose EVA-Flow, an EVent-based Anytime Flow estimation network to produce high-frame-rate event optical flow with only low-frame-rate optical flow ground truth for supervision. The key component of our EVA-Flow is the stacked Spatiotemporal Motion Refinement (SMR) module, which predicts temporally-dense optical flow and enhances the accuracy via spatial-temporal motion refinement. The time-dense feature warping utilized in the SMR module provides implicit supervision for the intermediate optical flow. Additionally, we introduce the Rectified Flow Warp Loss (RFWL) for the unsupervised evaluation of intermediate optical flow in the absence of ground truth. This is, to the best of our knowledge, the first work focusing on anytime optical flow estimation via event cameras. A comprehensive variety of experiments on MVSEC, DESC, and our EVA-FlowSet demonstrates that EVA-Flow achieves competitive performance, super-low-latency (5ms), fastest inference (9.2ms), time-dense motion estimation (200Hz), and strong generalization. Our code will be available at https://github.com/Yaozhuwa/EVA-Flow.
5.Disentangled Contrastive Image Translation for Nighttime Surveillance
Authors:Guanzhou Lan, Bin Zhao, Xuelong Li
Abstract: Nighttime surveillance suffers from degradation due to poor illumination and arduous human annotations. It is challengable and remains a security risk at night. Existing methods rely on multi-spectral images to perceive objects in the dark, which are troubled by low resolution and color absence. We argue that the ultimate solution for nighttime surveillance is night-to-day translation, or Night2Day, which aims to translate a surveillance scene from nighttime to the daytime while maintaining semantic consistency. To achieve this, this paper presents a Disentangled Contrastive (DiCo) learning method. Specifically, to address the poor and complex illumination in the nighttime scenes, we propose a learnable physical prior, i.e., the color invariant, which provides a stable perception of a highly dynamic night environment and can be incorporated into the learning pipeline of neural networks. Targeting the surveillance scenes, we develop a disentangled representation, which is an auxiliary pretext task that separates surveillance scenes into the foreground and background with contrastive learning. Such a strategy can extract the semantics without supervision and boost our model to achieve instance-aware translation. Finally, we incorporate all the modules above into generative adversarial networks and achieve high-fidelity translation. This paper also contributes a new surveillance dataset called NightSuR. It includes six scenes to support the study on nighttime surveillance. This dataset collects nighttime images with different properties of nighttime environments, such as flare and extreme darkness. Extensive experiments demonstrate that our method outperforms existing works significantly. The dataset and source code will be released on GitHub soon.
6.Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing Multiple Degradations in Real-World Images
Authors:Yongheng Zhang, Danfeng Yan, Yuanqiang Cai
Abstract: Removing multiple degradations, such as haze, rain, and blur, from real-world images poses a challenging and illposed problem. Recently, unified models that can handle different degradations have been proposed and yield promising results. However, these approaches focus on synthetic images and experience a significant performance drop when applied to realworld images. In this paper, we introduce Uni-Removal, a twostage semi-supervised framework for addressing the removal of multiple degradations in real-world images using a unified model and parameters. In the knowledge transfer stage, Uni-Removal leverages a supervised multi-teacher and student architecture in the knowledge transfer stage to facilitate learning from pretrained teacher networks specialized in different degradation types. A multi-grained contrastive loss is introduced to enhance learning from feature and image spaces. In the domain adaptation stage, unsupervised fine-tuning is performed by incorporating an adversarial discriminator on real-world images. The integration of an extended multi-grained contrastive loss and generative adversarial loss enables the adaptation of the student network from synthetic to real-world domains. Extensive experiments on real-world degraded datasets demonstrate the effectiveness of our proposed method. We compare our Uni-Removal framework with state-of-the-art supervised and unsupervised methods, showcasing its promising results in real-world image dehazing, deraining, and deblurring simultaneously.
7.SAR-NeRF: Neural Radiance Fields for Synthetic Aperture Radar Multi-View Representation
Authors:Zhengxin Lei, Feng Xu, Jiangtao Wei, Feng Cai, Feng Wang, Ya-Qiu Jin
Abstract: SAR images are highly sensitive to observation configurations, and they exhibit significant variations across different viewing angles, making it challenging to represent and learn their anisotropic features. As a result, deep learning methods often generalize poorly across different view angles. Inspired by the concept of neural radiance fields (NeRF), this study combines SAR imaging mechanisms with neural networks to propose a novel NeRF model for SAR image generation. Following the mapping and projection pinciples, a set of SAR images is modeled implicitly as a function of attenuation coefficients and scattering intensities in the 3D imaging space through a differentiable rendering equation. SAR-NeRF is then constructed to learn the distribution of attenuation coefficients and scattering intensities of voxels, where the vectorized form of 3D voxel SAR rendering equation and the sampling relationship between the 3D space voxels and the 2D view ray grids are analytically derived. Through quantitative experiments on various datasets, we thoroughly assess the multi-view representation and generalization capabilities of SAR-NeRF. Additionally, it is found that SAR-NeRF augumented dataset can significantly improve SAR target classification performance under few-shot learning setup, where a 10-type classification accuracy of 91.6\% can be achieved by using only 12 images per class.
8.Offline and Online Optical Flow Enhancement for Deep Video Compression
Authors:Chuanbo Tang, Xihua Sheng, Zhuoyuan Li, Haotian Zhang, Li Li, Dong Liu
Abstract: Video compression relies heavily on exploiting the temporal redundancy between video frames, which is usually achieved by estimating and using the motion information. The motion information is represented as optical flows in most of the existing deep video compression networks. Indeed, these networks often adopt pre-trained optical flow estimation networks for motion estimation. The optical flows, however, may be less suitable for video compression due to the following two factors. First, the optical flow estimation networks were trained to perform inter-frame prediction as accurately as possible, but the optical flows themselves may cost too many bits to encode. Second, the optical flow estimation networks were trained on synthetic data, and may not generalize well enough to real-world videos. We address the twofold limitations by enhancing the optical flows in two stages: offline and online. In the offline stage, we fine-tune a trained optical flow estimation network with the motion information provided by a traditional (non-deep) video compression scheme, e.g. H.266/VVC, as we believe the motion information of H.266/VVC achieves a better rate-distortion trade-off. In the online stage, we further optimize the latent features of the optical flows with a gradient descent-based algorithm for the video to be compressed, so as to enhance the adaptivity of the optical flows. We conduct experiments on a state-of-the-art deep video compression scheme, DCVC. Experimental results demonstrate that the proposed offline and online enhancement together achieves on average 12.8% bitrate saving on the tested videos, without increasing the model or computational complexity of the decoder side.
9.One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations
Authors:Kevin Hernandez-Diaz, Fernando Alonso-Fernandez, Josef Bigun
Abstract: One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers' output for unseen data and evaluate the method's robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.
10.DFR: Depth from Rotation by Uncalibrated Image Rectification with Latitudinal Motion Assumption
Authors:Yongcong Zhang, Yifei Xue, Ming Liao, Huiqing Zhang, Yizhen Lao
Abstract: Despite the increasing prevalence of rotating-style capture (e.g., surveillance cameras), conventional stereo rectification techniques frequently fail due to the rotation-dominant motion and small baseline between views. In this paper, we tackle the challenge of performing stereo rectification for uncalibrated rotating cameras. To that end, we propose Depth-from-Rotation (DfR), a novel image rectification solution that analytically rectifies two images with two-point correspondences and serves for further depth estimation. Specifically, we model the motion of a rotating camera as the camera rotates on a sphere with fixed latitude. The camera's optical axis lies perpendicular to the sphere's surface. We call this latitudinal motion assumption. Then we derive a 2-point analytical solver from directly computing the rectified transformations on the two images. We also present a self-adaptive strategy to reduce the geometric distortion after rectification. Extensive synthetic and real data experiments demonstrate that the proposed method outperforms existing works in effectiveness and efficiency by a significant margin.
11.TIAM -- A Metric for Evaluating Alignment in Text-to-Image Generation
Authors:Paul Grimal, Hervé Le Borgne, Olivier Ferret, Julien Tourille
Abstract: The progress in the generation of synthetic images has made it crucial to assess their quality. While several metrics have been proposed to assess the rendering of images, it is crucial for Text-to-Image (T2I) models, which generate images based on a prompt, to consider additional aspects such as to which extent the generated image matches the important content of the prompt. Moreover, although the generated images usually result from a random starting point, the influence of this one is generally not considered. In this article, we propose a new metric based on prompt templates to study the alignment between the content specified in the prompt and the corresponding generated images. It allows us to better characterize the alignment in terms of the type of the specified objects, their number, and their color. We conducted a study on several recent T2I models about various aspects. An additional interesting result we obtained with our approach is that image quality can vary drastically depending on the latent noise used as a seed for the images. We also quantify the influence of the number of concepts in the prompt, their order as well as their (color) attributes. Finally, our method allows us to identify some latent seeds that produce better images than others, opening novel directions of research on this understudied topic.
12.Unveiling the invisible: Enhanced detection and analysis deteriorated areas in solar PV modules using unsupervised sensing algorithms and 3D augmented reality
Authors:Adel Oulefki, Yassine Himeur, Thaweesak Trongtiraku, Kahina Amara, Sos Agaian, Samir, Benbelkacem, Mohamed Amine Guerroudji, Mohamed Zemmouri, Sahla Ferhat, Nadia Zenati, Shadi Atalla, Wathiq Mansoor
Abstract: Solar Photovoltaic (PV) is increasingly being used to address the global concern of energy security. However, hot spot and snail trails in PV modules caused mostly by crakes reduce their efficiency and power capacity. This article presents a groundbreaking methodology for automatically identifying and analyzing anomalies like hot spots and snail trails in Solar Photovoltaic (PV) modules, leveraging unsupervised sensing algorithms and 3D Augmented Reality (AR) visualization. By transforming the traditional methods of diagnosis and repair, our approach not only enhances efficiency but also substantially cuts down the cost of PV system maintenance. Validated through computer simulations and real-world image datasets, the proposed framework accurately identifies dirty regions, emphasizing the critical role of regular maintenance in optimizing the power capacity of solar PV modules. Our immediate objective is to leverage drone technology for real-time, automatic solar panel detection, significantly boosting the efficacy of PV maintenance. The proposed methodology could revolutionize solar PV maintenance, enabling swift, precise anomaly detection without human intervention. This could result in significant cost savings, heightened energy production, and improved overall performance of solar PV systems. Moreover, the novel combination of unsupervised sensing algorithms with 3D AR visualization heralds new opportunities for further research and development in solar PV maintenance.
13.ExFaceGAN: Exploring Identity Directions in GAN's Learned Latent Space for Synthetic Identity Generation
Authors:Fadi Boutros, Marcel Klemt, Meiling Fang, Arjan Kuijper, Naser Damer
Abstract: Deep generative models have recently presented impressive results in generating realistic face images of random synthetic identities. To generate multiple samples of a certain synthetic identity, several previous works proposed to disentangle the latent space of GANs by incorporating additional supervision or regularization, enabling the manipulation of certain attributes, e.g. identity, hairstyle, pose, or expression. Most of these works require designing special loss functions and training dedicated network architectures. Others proposed to disentangle specific factors in unconditional pretrained GANs latent spaces to control their output, which also requires supervision by attribute classifiers. Moreover, these attributes are entangled in GAN's latent space, making it difficult to manipulate them without affecting the identity information. We propose in this work a framework, ExFaceGAN, to disentangle identity information in state-of-the-art pretrained GANs latent spaces, enabling the generation of multiple samples of any synthetic identity. The variations in our generated images are not limited to specific attributes as ExFaceGAN explicitly aims at disentangling identity information, while other visual attributes are randomly drawn from a learned GAN latent space. As an example of the practical benefit of our ExFaceGAN, we empirically prove that data generated by ExFaceGAN can be successfully used to train face recognition models.
14.A Modular Multimodal Architecture for Gaze Target Prediction: Application to Privacy-Sensitive Settings
Authors:Anshul Gupta, Samy Tafasca, Jean-Marc Odobez
Abstract: Predicting where a person is looking is a complex task, requiring to understand not only the person's gaze and scene content, but also the 3D scene structure and the person's situation (are they manipulating? interacting or observing others? attentive?) to detect obstructions in the line of sight or apply attention priors that humans typically have when observing others. In this paper, we hypothesize that identifying and leveraging such priors can be better achieved through the exploitation of explicitly derived multimodal cues such as depth and pose. We thus propose a modular multimodal architecture allowing to combine these cues using an attention mechanism. The architecture can naturally be exploited in privacy-sensitive situations such as surveillance and health, where personally identifiable information cannot be released. We perform extensive experiments on the GazeFollow and VideoAttentionTarget public datasets, obtaining state-of-the-art performance and demonstrating very competitive results in the privacy setting case.
15.ResMatch: Residual Attention Learning for Local Feature Matching
Authors:Yuxin Deng, Jiayi Ma
Abstract: Attention-based graph neural networks have made great progress in feature matching learning. However, insight of how attention mechanism works for feature matching is lacked in the literature. In this paper, we rethink cross- and self-attention from the viewpoint of traditional feature matching and filtering. In order to facilitate the learning of matching and filtering, we inject the similarity of descriptors and relative positions into cross- and self-attention score, respectively. In this way, the attention can focus on learning residual matching and filtering functions with reference to the basic functions of measuring visual and spatial correlation. Moreover, we mine intra- and inter-neighbors according to the similarity of descriptors and relative positions. Then sparse attention for each point can be performed only within its neighborhoods to acquire higher computation efficiency. Feature matching networks equipped with our full and sparse residual attention learning strategies are termed ResMatch and sResMatch respectively. Extensive experiments, including feature matching, pose estimation and visual localization, confirm the superiority of our networks.
16.Co-Attention Gated Vision-Language Embedding for Visual Question Localized-Answering in Robotic Surgery
Authors:Long Bai, Mobarakol Islam, Hongliang Ren
Abstract: Medical students and junior surgeons often rely on senior surgeons and specialists to answer their questions when learning surgery. However, experts are often busy with clinical and academic work, and have little time to give guidance. Meanwhile, existing deep learning (DL)-based surgical Visual Question Answering (VQA) systems can only provide simple answers without the location of the answers. In addition, vision-language (ViL) embedding is still a less explored research in these kinds of tasks. Therefore, a surgical Visual Question Localized-Answering (VQLA) system would be helpful for medical students and junior surgeons to learn and understand from recorded surgical videos. We propose an end-to-end Transformer with Co-Attention gaTed Vision-Language (CAT-ViL) for VQLA in surgical scenarios, which does not require feature extraction through detection models. The CAT-ViL embedding module is designed to fuse heterogeneous features from visual and textual sources. The fused embedding will feed a standard Data-Efficient Image Transformer (DeiT) module, before the parallel classifier and detector for joint prediction. We conduct the experimental validation on public surgical videos from MICCAI EndoVis Challenge 2017 and 2018. The experimental results highlight the superior performance and robustness of our proposed model compared to the state-of-the-art approaches. Ablation studies further prove the outstanding performance of all the proposed components. The proposed method provides a promising solution for surgical scene understanding, and opens up a primary step in the Artificial Intelligence (AI)-based VQLA system for surgical training. Our code is publicly available.
17.The Staged Knowledge Distillation in Video Classification: Harmonizing Student Progress by a Complementary Weakly Supervised Framework
Authors:Chao Wang, Zheng Tang
Abstract: In the context of label-efficient learning on video data, the distillation method and the structural design of the teacher-student architecture have a significant impact on knowledge distillation. However, the relationship between these factors has been overlooked in previous research. To address this gap, we propose a new weakly supervised learning framework for knowledge distillation in video classification that is designed to improve the efficiency and accuracy of the student model. Our approach leverages the concept of substage-based learning to distill knowledge based on the combination of student substages and the correlation of corresponding substages. We also employ the progressive cascade training method to address the accuracy loss caused by the large capacity gap between the teacher and the student. Additionally, we propose a pseudo-label optimization strategy to improve the initial data label. To optimize the loss functions of different distillation substages during the training process, we introduce a new loss method based on feature distribution. We conduct extensive experiments on both real and simulated data sets, demonstrating that our proposed approach outperforms existing distillation methods in terms of knowledge distillation for video classification tasks. Our proposed substage-based distillation approach has the potential to inform future research on label-efficient learning for video data.
18.Generative Pretraining in Multimodality
Authors:Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun Huang, Xinlong Wang
Abstract: We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance.
19.Does pre-training on brain-related tasks results in better deep-learning-based brain age biomarkers?
Authors:Bruno Machado Pacheco, Victor Hugo Rocha de Oliveira, Augusto Braga Fernandes Antunes, Saulo Domingos de Souza Pedro, Danilo Silva
Abstract: Brain age prediction using neuroimaging data has shown great potential as an indicator of overall brain health and successful aging, as well as a disease biomarker. Deep learning models have been established as reliable and efficient brain age estimators, being trained to predict the chronological age of healthy subjects. In this paper, we investigate the impact of a pre-training step on deep learning models for brain age prediction. More precisely, instead of the common approach of pre-training on natural imaging classification, we propose pre-training the models on brain-related tasks, which led to state-of-the-art results in our experiments on ADNI data. Furthermore, we validate the resulting brain age biomarker on images of patients with mild cognitive impairment and Alzheimer's disease. Interestingly, our results indicate that better-performing deep learning models in terms of brain age prediction on healthy patients do not result in more reliable biomarkers.
20.OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification
Authors:Linhao Qu, Yingfan Ma, Zhiwei Yang, Manning Wang, Zhijian Song
Abstract: Active learning (AL) is an effective approach to select the most informative samples to label so as to reduce the annotation cost. Existing AL methods typically work under the closed-set assumption, i.e., all classes existing in the unlabeled sample pool need to be classified by the target model. However, in some practical clinical tasks, the unlabeled pool may contain not only the target classes that need to be fine-grainedly classified, but also non-target classes that are irrelevant to the clinical tasks. Existing AL methods cannot work well in this scenario because they tend to select a large number of non-target samples. In this paper, we formulate this scenario as an open-set AL problem and propose an efficient framework, OpenAL, to address the challenge of querying samples from an unlabeled pool with both target class and non-target class samples. Experiments on fine-grained classification of pathology images show that OpenAL can significantly improve the query quality of target class samples and achieve higher performance than current state-of-the-art AL methods. Code is available at https://github.com/miccaiif/OpenAL.
21.Unbiased Scene Graph Generation via Two-stage Causal Modeling
Authors:Shuzhou Sun, Shuaifeng Zhi, Qing Liao, Janne Heikkilä, Li Liu
Abstract: Despite the impressive performance of recent unbiased Scene Graph Generation (SGG) methods, the current debiasing literature mainly focuses on the long-tailed distribution problem, whereas it overlooks another source of bias, i.e., semantic confusion, which makes the SGG model prone to yield false predictions for similar relationships. In this paper, we explore a debiasing procedure for the SGG task leveraging causal inference. Our central insight is that the Sparse Mechanism Shift (SMS) in causality allows independent intervention on multiple biases, thereby potentially preserving head category performance while pursuing the prediction of high-informative tail relationships. However, the noisy datasets lead to unobserved confounders for the SGG task, and thus the constructed causal models are always causal-insufficient to benefit from SMS. To remedy this, we propose Two-stage Causal Modeling (TsCM) for the SGG task, which takes the long-tailed distribution and semantic confusion as confounders to the Structural Causal Model (SCM) and then decouples the causal intervention into two stages. The first stage is causal representation learning, where we use a novel Population Loss (P-Loss) to intervene in the semantic confusion confounder. The second stage introduces the Adaptive Logit Adjustment (AL-Adjustment) to eliminate the long-tailed distribution confounder to complete causal calibration learning. These two stages are model agnostic and thus can be used in any SGG model that seeks unbiased predictions. Comprehensive experiments conducted on the popular SGG backbones and benchmarks show that our TsCM can achieve state-of-the-art performance in terms of mean recall rate. Furthermore, TsCM can maintain a higher recall rate than other debiasing methods, which indicates that our method can achieve a better tradeoff between head and tail relationships.
22.Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in Autonomous Vehicle Safety
Authors:Sushil Sharma, Ganesh Sistu, Lucie Yahiaoui, Arindam Das, Mark Halton, Ciarán Eising
Abstract: Autonomous vehicles require accurate and reliable short-term trajectory predictions for safe and efficient driving. While most commercial automated vehicles currently use state machine-based algorithms for trajectory forecasting, recent efforts have focused on end-to-end data-driven systems. Often, the design of these models is limited by the availability of datasets, which are typically restricted to generic scenarios. To address this limitation, we have developed a synthetic dataset for short-term trajectory prediction tasks using the CARLA simulator. This dataset is extensive and incorporates what is considered complex scenarios - pedestrians crossing the road, vehicles overtaking - and comprises 6000 perspective view images with corresponding IMU and odometry information for each frame. Furthermore, an end-to-end short-term trajectory prediction model using convolutional neural networks (CNN) and long short-term memory (LSTM) networks has also been developed. This model can handle corner cases, such as slowing down near zebra crossings and stopping when pedestrians cross the road, without the need for explicit encoding of the surrounding environment. In an effort to accelerate this research and assist others, we are releasing our dataset and model to the research community. Our datasets are publicly available on https://github.com/navigatinguncertainty.
23.Masked Vision and Language Pre-training with Unimodal and Multimodal Contrastive Losses for Medical Visual Question Answering
Authors:Pengfei Li, Gang Liu, Jinlong He, Zixu Zhao, Shenjun Zhong
Abstract: Medical visual question answering (VQA) is a challenging task that requires answering clinical questions of a given medical image, by taking consider of both visual and language information. However, due to the small scale of training data for medical VQA, pre-training fine-tuning paradigms have been a commonly used solution to improve model generalization performance. In this paper, we present a novel self-supervised approach that learns unimodal and multimodal feature representations of input images and text using medical image caption datasets, by leveraging both unimodal and multimodal contrastive losses, along with masked language modeling and image text matching as pretraining objectives. The pre-trained model is then transferred to downstream medical VQA tasks. The proposed approach achieves state-of-the-art (SOTA) performance on three publicly available medical VQA datasets with significant accuracy improvements of 2.2%, 14.7%, and 1.7% respectively. Besides, we conduct a comprehensive analysis to validate the effectiveness of different components of the approach and study different pre-training settings. Our codes and models are available at https://github.com/pengfeiliHEU/MUMC.
24.Automatic Generation of Semantic Parts for Face Image Synthesis
Authors:Tomaso Fontanini, Claudio Ferrari, Massimo Bertozzi, Andrea Prati
Abstract: Semantic image synthesis (SIS) refers to the problem of generating realistic imagery given a semantic segmentation mask that defines the spatial layout of object classes. Most of the approaches in the literature, other than the quality of the generated images, put effort in finding solutions to increase the generation diversity in terms of style i.e. texture. However, they all neglect a different feature, which is the possibility of manipulating the layout provided by the mask. Currently, the only way to do so is manually by means of graphical users interfaces. In this paper, we describe a network architecture to address the problem of automatically manipulating or generating the shape of object classes in semantic segmentation masks, with specific focus on human faces. Our proposed model allows embedding the mask class-wise into a latent space where each class embedding can be independently edited. Then, a bi-directional LSTM block and a convolutional decoder output a new, locally manipulated mask. We report quantitative and qualitative results on the CelebMask-HQ dataset, which show our model can both faithfully reconstruct and modify a segmentation mask at the class level. Also, we show our model can be put before a SIS generator, opening the way to a fully automatic generation control of both shape and texture. Code available at https://github.com/TFonta/Semantic-VAE.
25.Class Instance Balanced Learning for Long-Tailed Classification
Authors:Marc-Antoine Lavoie, Steven Waslander
Abstract: The long-tailed image classification task remains important in the development of deep neural networks as it explicitly deals with large imbalances in the class frequencies of the training data. While uncommon in engineered datasets, this imbalance is almost always present in real-world data. Previous approaches have shown that combining cross-entropy and contrastive learning can improve performance on the long-tailed task, but they do not explore the tradeoff between head and tail classes. We propose a novel class instance balanced loss (CIBL), which reweights the relative contributions of a cross-entropy and a contrastive loss as a function of the frequency of class instances in the training batch. This balancing favours the contrastive loss for more common classes, leading to a learned classifier with a more balanced performance across all class frequencies. Furthermore, increasing the relative weight on the contrastive head shifts performance from common (head) to rare (tail) classes, allowing the user to skew the performance towards these classes if desired. We also show that changing the linear classifier head with a cosine classifier yields a network that can be trained to similar performance in substantially fewer epochs. We obtain competitive results on both CIFAR-100-LT and ImageNet-LT.
26.Self-supervised adversarial masking for 3D point cloud representation learning
Authors:Michał Szachniewicz, Wojciech Kozłowski, Michał Stypułkowski, Maciej Zięba
Abstract: Self-supervised methods have been proven effective for learning deep representations of 3D point cloud data. Although recent methods in this domain often rely on random masking of inputs, the results of this approach can be improved. We introduce PointCAM, a novel adversarial method for learning a masking function for point clouds. Our model utilizes a self-distillation framework with an online tokenizer for 3D point clouds. Compared to previous techniques that optimize patch-level and object-level objectives, we postulate applying an auxiliary network that learns how to select masks instead of choosing them randomly. Our results show that the learned masking function achieves state-of-the-art or competitive performance on various downstream tasks. The source code is available at https://github.com/szacho/pointcam.
27.Handwritten Text Recognition Using Convolutional Neural Network
Authors:Atman Mishra, A. Sharath Ram, Kavyashree C
Abstract: OCR (Optical Character Recognition) is a technology that offers comprehensive alphanumeric recognition of handwritten and printed characters at electronic speed by merely scanning the document. Recently, the understanding of visual data has been termed Intelligent Character Recognition (ICR). Intelligent Character Recognition (ICR) is the OCR module that can convert scans of handwritten or printed characters into ASCII text. ASCII data is the standard format for data encoding in electronic communication. ASCII assigns standard numeric values to letters, numeral, symbols, white-spaces and other characters. In more technical terms, OCR is the process of using an electronic device to transform 2-Dimensional textual information into machine-encoded text. Anything that contains text both machine written or handwritten can be scanned either through a scanner or just simply a picture of the text is enough for the recognition system to distinguish the text. The goal of this papers is to show the results of a Convolutional Neural Network model which has been trained on National Institute of Science and Technology (NIST) dataset containing over a 100,000 images. The network learns from the features extracted from the images and use it to generate the probability of each class to which the picture belongs to. We have achieved an accuracy of 90.54% with a loss of 2.53%.
28.On the Vulnerability of DeepFake Detectors to Attacks Generated by Denoising Diffusion Models
Authors:Marija Ivanovska, Vitomir Štruc
Abstract: The detection of malicious Deepfakes is a constantly evolving problem, that requires continuous monitoring of detectors, to ensure they are able to detect image manipulations generated by the latest emerging models. In this paper, we present a preliminary study that investigates the vulnerability of single-image Deepfake detectors to attacks created by a representative of the newest generation of generative methods, i.e. Denoising Diffusion Models (DDMs). Our experiments are run on FaceForensics++, a commonly used benchmark dataset, consisting of Deepfakes generated with various techniques for face swapping and face reenactment. The analysis shows, that reconstructing existing Deepfakes with only one denoising diffusion step significantly decreases the accuracy of all tested detectors, without introducing visually perceptible image changes.
29.3D detection of roof sections from a single satellite image and application to LOD2-building reconstruction
Authors:Johann Lussange, Mulin Yu, Yuliya Tarabalka, Florent Lafarge
Abstract: Reconstructing urban areas in 3D out of satellite raster images has been a long-standing and challenging goal of both academical and industrial research. The rare methods today achieving this objective at a Level Of Details $2$ rely on procedural approaches based on geometry, and need stereo images and/or LIDAR data as input. We here propose a method for urban 3D reconstruction named KIBS(\textit{Keypoints Inference By Segmentation}), which comprises two novel features: i) a full deep learning approach for the 3D detection of the roof sections, and ii) only one single (non-orthogonal) satellite raster image as model input. This is achieved in two steps: i) by a Mask R-CNN model performing a 2D segmentation of the buildings' roof sections, and after blending these latter segmented pixels within the RGB satellite raster image, ii) by another identical Mask R-CNN model inferring the heights-to-ground of the roof sections' corners via panoptic segmentation, unto full 3D reconstruction of the buildings and city. We demonstrate the potential of the KIBS method by reconstructing different urban areas in a few minutes, with a Jaccard index for the 2D segmentation of individual roof sections of $88.55\%$ and $75.21\%$ on our two data sets resp., and a height's mean error of such correctly segmented pixels for the 3D reconstruction of $1.60$ m and $2.06$ m on our two data sets resp., hence within the LOD2 precision range.
30.Bio-Inspired Night Image Enhancement Based on Contrast Enhancement and Denoising
Authors:Xinyi Bai, Steffi Agino Priyanka, Hsiao-Jung Tung, Yuankai Wang
Abstract: Due to the low accuracy of object detection and recognition in many intelligent surveillance systems at nighttime, the quality of night images is crucial. Compared with the corresponding daytime image, nighttime image is characterized as low brightness, low contrast and high noise. In this paper, a bio-inspired image enhancement algorithm is proposed to convert a low illuminance image to a brighter and clear one. Different from existing bio-inspired algorithm, the proposed method doesn't use any training sequences, we depend on a novel chain of contrast enhancement and denoising algorithms without using any forms of recursive functions. Our method can largely improve the brightness and contrast of night images, besides, suppress noise. Then we implement on real experiment, and simulation experiment to test our algorithms. Both results show the advantages of proposed algorithm over contrast pair, Meylan and Retinex.
31.Efficient 3D Articulated Human Generation with Layered Surface Volumes
Authors:Yinghao Xu, Wang Yifan, Alexander W. Bergman, Menglei Chai, Bolei Zhou, Gordon Wetzstein
Abstract: Access to high-quality and diverse 3D articulated digital human assets is crucial in various applications, ranging from virtual reality to social platforms. Generative approaches, such as 3D generative adversarial networks (GANs), are rapidly replacing laborious manual content creation tools. However, existing 3D GAN frameworks typically rely on scene representations that leverage either template meshes, which are fast but offer limited quality, or volumes, which offer high capacity but are slow to render, thereby limiting the 3D fidelity in GAN settings. In this work, we introduce layered surface volumes (LSVs) as a new 3D object representation for articulated digital humans. LSVs represent a human body using multiple textured mesh layers around a conventional template. These layers are rendered using alpha compositing with fast differentiable rasterization, and they can be interpreted as a volumetric representation that allocates its capacity to a manifold of finite thickness around the template. Unlike conventional single-layer templates that struggle with representing fine off-surface details like hair or accessories, our surface volumes naturally capture such details. LSVs can be articulated, and they exhibit exceptional efficiency in GAN settings, where a 2D generator learns to synthesize the RGBA textures for the individual layers. Trained on unstructured, single-view 2D image datasets, our LSV-GAN generates high-quality and view-consistent 3D articulated digital humans without the need for view-inconsistent 2D upsampling networks.
32.EgoVLPv2: Egocentric Video-Language Pre-training with Fusion in the Backbone
Authors:Shraman Pramanick, Yale Song, Sayan Nag, Kevin Qinghong Lin, Hardik Shah, Mike Zheng Shou, Rama Chellappa, Pengchuan Zhang
Abstract: Video-language pre-training (VLP) has become increasingly important due to its ability to generalize to various vision and language tasks. However, existing egocentric VLP frameworks utilize separate video and language encoders and learn task-specific cross-modal information only during fine-tuning, limiting the development of a unified system. In this work, we introduce the second generation of egocentric video-language pre-training (EgoVLPv2), a significant improvement from the previous generation, by incorporating cross-modal fusion directly into the video and language backbones. EgoVLPv2 learns strong video-text representation during pre-training and reuses the cross-modal attention modules to support different downstream tasks in a flexible and efficient manner, reducing fine-tuning costs. Moreover, our proposed fusion in the backbone strategy is more lightweight and compute-efficient than stacking additional fusion-specific layers. Extensive experiments on a wide range of VL tasks demonstrate the effectiveness of EgoVLPv2 by achieving consistent state-of-the-art performance over strong baselines across all downstream. Our project page can be found at https://shramanpramanick.github.io/EgoVLPv2/.
33.My3DGen: Building Lightweight Personalized 3D Generative Model
Authors:Luchao Qi, Jiaye Wu, Shengze Wang, Soumyadip Sengupta
Abstract: Our paper presents My3DGen, a practical system for creating a personalized and lightweight 3D generative prior using as few as 10 images. My3DGen can reconstruct multi-view consistent images from an input test image, and generate novel appearances by interpolating between any two images of the same individual. While recent studies have demonstrated the effectiveness of personalized generative priors in producing high-quality 2D portrait reconstructions and syntheses, to the best of our knowledge, we are the first to develop a personalized 3D generative prior. Instead of fine-tuning a large pre-trained generative model with millions of parameters to achieve personalization, we propose a parameter-efficient approach. Our method involves utilizing a pre-trained model with fixed weights as a generic prior, while training a separate personalized prior through low-rank decomposition of the weights in each convolution and fully connected layer. However, parameter-efficient few-shot fine-tuning on its own often leads to overfitting. To address this, we introduce a regularization technique based on symmetry of human faces. This regularization enforces that novel view renderings of a training sample, rendered from symmetric poses, exhibit the same identity. By incorporating this symmetry prior, we enhance the quality of reconstruction and synthesis, particularly for non-frontal (profile) faces. Our final system combines low-rank fine-tuning with symmetry regularization and significantly surpasses the performance of pre-trained models, e.g. EG3D. It introduces only approximately 0.6 million additional parameters per identity compared to 31 million for full finetuning of the original model. As a result, our system achieves a 50-fold reduction in model size without sacrificing the quality of the generated 3D faces. Code will be available at our project page: https://luchaoqi.github.io/my3dgen.
34.Scale Alone Does not Improve Mechanistic Interpretability in Vision Models
Authors:Roland S. Zimmermann, Thomas Klein, Wieland Brendel
Abstract: In light of the recent widespread adoption of AI systems, understanding the internal information processing of neural networks has become increasingly critical. Most recently, machine vision has seen remarkable progress by scaling neural networks to unprecedented levels in dataset and model size. We here ask whether this extraordinary increase in scale also positively impacts the field of mechanistic interpretability. In other words, has our understanding of the inner workings of scaled neural networks improved as well? We here use a psychophysical paradigm to quantify mechanistic interpretability for a diverse suite of models and find no scaling effect for interpretability - neither for model nor dataset size. Specifically, none of the nine investigated state-of-the-art models are easier to interpret than the GoogLeNet model from almost a decade ago. Latest-generation vision models appear even less interpretable than older architectures, hinting at a regression rather than improvement, with modern models sacrificing interpretability for accuracy. These results highlight the need for models explicitly designed to be mechanistically interpretable and the need for more helpful interpretability methods to increase our understanding of networks at an atomic level. We release a dataset containing more than 120'000 human responses from our psychophysical evaluation of 767 units across nine models. This dataset is meant to facilitate research on automated instead of human-based interpretability evaluations that can ultimately be leveraged to directly optimize the mechanistic interpretability of models.
35.Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives
Authors:Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A. Efros, Mathieu Aubry
Abstract: Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW .