Computer Vision and Pattern Recognition (cs.CV)
Thu, 20 Apr 2023
1.Learning CLIP Guided Visual-Text Fusion Transformer for Video-based Pedestrian Attribute Recognition
Authors:Jun Zhu, Jiandong Jin, Zihan Yang, Xiaohao Wu, Xiao Wang
Abstract: Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image. However, the performance is not reliable for images with challenging factors, such as heavy occlusion, motion blur, etc. In this work, we propose to understand human attributes using video frames that can make full use of temporal information. Specifically, we formulate the video-based PAR as a vision-language fusion problem and adopt pre-trained big models CLIP to extract the feature embeddings of given video frames. To better utilize the semantic information, we take the attribute list as another input and transform the attribute words/phrase into the corresponding sentence via split, expand, and prompt. Then, the text encoder of CLIP is utilized for language embedding. The averaged visual tokens and text tokens are concatenated and fed into a fusion Transformer for multi-modal interactive learning. The enhanced tokens will be fed into a classification head for pedestrian attribute prediction. Extensive experiments on a large-scale video-based PAR dataset fully validated the effectiveness of our proposed framework.
2.Clustered-patch Element Connection for Few-shot Learning
Authors:Jinxiang Lai, Siqian Yang, Junhong Zhou, Wenlong Wu, Xiaochen Chen, Jun Liu, Bin-Bin Gao, Chengjie Wang
Abstract: Weak feature representation problem has influenced the performance of few-shot classification task for a long time. To alleviate this problem, recent researchers build connections between support and query instances through embedding patch features to generate discriminative representations. However, we observe that there exists semantic mismatches (foreground/ background) among these local patches, because the location and size of the target object are not fixed. What is worse, these mismatches result in unreliable similarity confidences, and complex dense connection exacerbates the problem. According to this, we propose a novel Clustered-patch Element Connection (CEC) layer to correct the mismatch problem. The CEC layer leverages Patch Cluster and Element Connection operations to collect and establish reliable connections with high similarity patch features, respectively. Moreover, we propose a CECNet, including CEC layer based attention module and distance metric. The former is utilized to generate a more discriminative representation benefiting from the global clustered-patch features, and the latter is introduced to reliably measure the similarity between pair-features. Extensive experiments demonstrate that our CECNet outperforms the state-of-the-art methods on classification benchmark. Furthermore, our CEC approach can be extended into few-shot segmentation and detection tasks, which achieves competitive performances.
3.Scene Style Text Editing
Authors:Tonghua Su, Fuxiang Yang, Xiang Zhou, Donglin Di, Zhongjie Wang, Songze Li
Abstract: In this work, we propose a task called "Scene Style Text Editing (SSTE)", changing the text content as well as the text style of the source image while keeping the original text scene. Existing methods neglect to fine-grained adjust the style of the foreground text, such as its rotation angle, color, and font type. To tackle this task, we propose a quadruple framework named "QuadNet" to embed and adjust foreground text styles in the latent feature space. Specifically, QuadNet consists of four parts, namely background inpainting, style encoder, content encoder, and fusion generator. The background inpainting erases the source text content and recovers the appropriate background with a highly authentic texture. The style encoder extracts the style embedding of the foreground text. The content encoder provides target text representations in the latent feature space to implement the content edits. The fusion generator combines the information yielded from the mentioned parts and generates the rendered text images. Practically, our method is capable of performing promisingly on real-world datasets with merely string-level annotation. To the best of our knowledge, our work is the first to finely manipulate the foreground text content and style by deeply semantic editing in the latent feature space. Extensive experiments demonstrate that QuadNet has the ability to generate photo-realistic foreground text and avoid source text shadows in real-world scenes when editing text content.
4.eTag: Class-Incremental Learning with Embedding Distillation and Task-Oriented Generation
Authors:Libo Huang, Yan Zeng, Chuanguang Yang, Zhulin An, Boyu Diao, Yongjun Xu
Abstract: Class-Incremental Learning (CIL) aims to solve the neural networks' catastrophic forgetting problem, which refers to the fact that once the network updates on a new task, its performance on previously-learned tasks drops dramatically. Most successful CIL methods incrementally train a feature extractor with the aid of stored exemplars, or estimate the feature distribution with the stored prototypes. However, the stored exemplars would violate the data privacy concerns, while the stored prototypes might not reasonably be consistent with a proper feature distribution, hindering the exploration of real-world CIL applications. In this paper, we propose a method of \textit{e}mbedding distillation and \textit{Ta}sk-oriented \textit{g}eneration (\textit{eTag}) for CIL, which requires neither the exemplar nor the prototype. Instead, eTag achieves a data-free manner to train the neural networks incrementally. To prevent the feature extractor from forgetting, eTag distills the embeddings of the network's intermediate blocks. Additionally, eTag enables a generative network to produce suitable features, fitting the needs of the top incremental classifier. Experimental results confirmed that our proposed eTag considerably outperforms the state-of-the-art methods on CIFAR-100 and ImageNet-sub\footnote{Our code is available in the Supplementary Materials.
5.SATA: Source Anchoring and Target Alignment Network for Continual Test Time Adaptation
Authors:Goirik Chakrabarty, Manogna Sreenivas, Soma Biswas
Abstract: Adapting a trained model to perform satisfactorily on continually changing testing domains/environments is an important and challenging task. In this work, we propose a novel framework, SATA, which aims to satisfy the following characteristics required for online adaptation: 1) can work seamlessly with different (preferably small) batch sizes to reduce latency; 2) should continue to work well for the source domain; 3) should have minimal tunable hyper-parameters and storage requirements. Given a pre-trained network trained on source domain data, the proposed SATA framework modifies the batch-norm affine parameters using source anchoring based self-distillation. This ensures that the model incorporates the knowledge of the newly encountered domains, without catastrophically forgetting about the previously seen ones. We also propose a source-prototype driven contrastive alignment to ensure natural grouping of the target samples, while maintaining the already learnt semantic information. Extensive evaluation on three benchmark datasets under challenging settings justify the effectiveness of SATA for real-world applications.
6.Learning Bottleneck Concepts in Image Classification
Authors:Bowen Wang, Liangzhi Li, Yuta Nakashima, Hajime Nagahara
Abstract: Interpreting and explaining the behavior of deep neural networks is critical for many tasks. Explainable AI provides a way to address this challenge, mostly by providing per-pixel relevance to the decision. Yet, interpreting such explanations may require expert knowledge. Some recent attempts toward interpretability adopt a concept-based framework, giving a higher-level relationship between some concepts and model decisions. This paper proposes Bottleneck Concept Learner (BotCL), which represents an image solely by the presence/absence of concepts learned through training over the target task without explicit supervision over the concepts. It uses self-supervision and tailored regularizers so that learned concepts can be human-understandable. Using some image classification tasks as our testbed, we demonstrate BotCL's potential to rebuild neural networks for better interpretability. Code is available at https://github.com/wbw520/BotCL and a simple demo is available at https://botcl.liangzhili.com/.
7.Diversifying the High-level Features for better Adversarial Transferability
Authors:Zhiyuan Wang, Zeliang Zhang, Siyuan Liang, Xiaosen Wang
Abstract: Given the great threat of adversarial attacks against Deep Neural Networks (DNNs), numerous works have been proposed to boost transferability to attack real-world applications. However, existing attacks often utilize advanced gradient calculation or input transformation but ignore the white-box model. Inspired by the fact that DNNs are over-parameterized for superior performance, we propose diversifying the high-level features (DHF) for more transferable adversarial examples. In particular, DHF perturbs the high-level features by randomly transforming the high-level features and mixing them with the feature of benign samples when calculating the gradient at each iteration. Due to the redundancy of parameters, such transformation does not affect the classification performance but helps identify the invariant features across different models, leading to much better transferability. Empirical evaluations on ImageNet dataset show that DHF could effectively improve the transferability of existing momentum-based attacks. Incorporated into the input transformation-based attacks, DHF generates more transferable adversarial examples and outperforms the baselines with a clear margin when attacking several defense models, showing its generalization to various attacks and high effectiveness for boosting transferability.
8.Motion Artifacts Detection in Short-scan Dental CBCT Reconstructions
Authors:Abdul Salam Rasmi Asraf Ali, Andrea Fusiello, Claudio Landi, Cristina Sarti, Anneke Annassia Putri Siswadi
Abstract: Cone Beam Computed Tomography (CBCT) is widely used in dentistry for diagnostics and treatment planning. CBCT Imaging has a long acquisition time and consequently, the patient is likely to move. This motion causes significant artifacts in the reconstructed data which may lead to misdiagnosis. Existing motion correction algorithms only address this issue partially, struggling with inconsistencies due to truncation, accuracy, and execution speed. On the other hand, a short-scan reconstruction using a subset of motion-free projections with appropriate weighting methods can have a sufficient clinical image quality for most diagnostic purposes. Therefore, a framework is used in this study to extract the motion-free part of the scanned projections with which a clean short-scan volume can be reconstructed without using correction algorithms. Motion artifacts are detected using deep learning with a slice-based prediction scheme followed by volume averaging to get the final result. A realistic motion simulation strategy and data augmentation has been implemented to address data scarcity. The framework has been validated by testing it with real motion-affected data while the model was trained only with simulated motion data. This shows the feasibility to apply the proposed framework to a broad variety of motion cases for further research.
9.High-Fidelity and Freely Controllable Talking Head Video Generation
Authors:Yue Gao, Yuan Zhou, Jinglu Wang, Xiao Li, Xiang Ming, Yan Lu
Abstract: Talking head generation is to generate video based on a given source identity and target motion. However, current methods face several challenges that limit the quality and controllability of the generated videos. First, the generated face often has unexpected deformation and severe distortions. Second, the driving image does not explicitly disentangle movement-relevant information, such as poses and expressions, which restricts the manipulation of different attributes during generation. Third, the generated videos tend to have flickering artifacts due to the inconsistency of the extracted landmarks between adjacent frames. In this paper, we propose a novel model that produces high-fidelity talking head videos with free control over head pose and expression. Our method leverages both self-supervised learned landmarks and 3D face model-based landmarks to model the motion. We also introduce a novel motion-aware multi-scale feature alignment module to effectively transfer the motion without face distortion. Furthermore, we enhance the smoothness of the synthesized talking head videos with a feature context adaptation and propagation module. We evaluate our model on challenging datasets and demonstrate its state-of-the-art performance. More information is available at https://yuegao.me/PECHead.
10.SCoDA: Domain Adaptive Shape Completion for Real Scans
Authors:Yushuang Wu, Zizheng Yan, Ce Chen, Lai Wei, Xiao Li, Guanbin Li, Yihao Li, Shuguang Cui, Xiaoguang Han
Abstract: 3D shape completion from point clouds is a challenging task, especially from scans of real-world objects. Considering the paucity of 3D shape ground truths for real scans, existing works mainly focus on benchmarking this task on synthetic data, e.g. 3D computer-aided design models. However, the domain gap between synthetic and real data limits the generalizability of these methods. Thus, we propose a new task, SCoDA, for the domain adaptation of real scan shape completion from synthetic data. A new dataset, ScanSalon, is contributed with a bunch of elaborate 3D models created by skillful artists according to scans. To address this new task, we propose a novel cross-domain feature fusion method for knowledge transfer and a novel volume-consistent self-training framework for robust learning from real data. Extensive experiments prove our method is effective to bring an improvement of 6%~7% mIoU.
11.Spiking-Fer: Spiking Neural Network for Facial Expression Recognition With Event Cameras
Authors:Sami Barchid, Benjamin Allaert, Amel Aissaoui, José Mennesson, Chaabane Djéraba
Abstract: Facial Expression Recognition (FER) is an active research domain that has shown great progress recently, notably thanks to the use of large deep learning models. However, such approaches are particularly energy intensive, which makes their deployment difficult for edge devices. To address this issue, Spiking Neural Networks (SNNs) coupled with event cameras are a promising alternative, capable of processing sparse and asynchronous events with lower energy consumption. In this paper, we establish the first use of event cameras for FER, named "Event-based FER", and propose the first related benchmarks by converting popular video FER datasets to event streams. To deal with this new task, we propose "Spiking-FER", a deep convolutional SNN model, and compare it against a similar Artificial Neural Network (ANN). Experiments show that the proposed approach achieves comparable performance to the ANN architecture, while consuming less energy by orders of magnitude (up to 65.39x). In addition, an experimental study of various event-based data augmentation techniques is performed to provide insights into the efficient transformations specific to event-based FER.
12.Multi-view Vision-Prompt Fusion Network: Can 2D Pre-trained Model Boost 3D Point Cloud Data-scarce Learning?
Authors:Haoyang Peng, Baopu Li, Bo Zhang, Xin Chen, Tao Chen, Hongyuan Zhu
Abstract: Point cloud based 3D deep model has wide applications in many applications such as autonomous driving, house robot, and so on. Inspired by the recent prompt learning in natural language processing, this work proposes a novel Multi-view Vision-Prompt Fusion Network (MvNet) for few-shot 3D point cloud classification. MvNet investigates the possibility of leveraging the off-the-shelf 2D pre-trained models to achieve the few-shot classification, which can alleviate the over-dependence issue of the existing baseline models towards the large-scale annotated 3D point cloud data. Specifically, MvNet first encodes a 3D point cloud into multi-view image features for a number of different views. Then, a novel multi-view prompt fusion module is developed to effectively fuse information from different views to bridge the gap between 3D point cloud data and 2D pre-trained models. A set of 2D image prompts can then be derived to better describe the suitable prior knowledge for a large-scale pre-trained image model for few-shot 3D point cloud classification. Extensive experiments on ModelNet, ScanObjectNN, and ShapeNet datasets demonstrate that MvNet achieves new state-of-the-art performance for 3D few-shot point cloud image classification. The source code of this work will be available soon.
13.Domain Generalization for Mammographic Image Analysis via Contrastive Learning
Authors:Zheren Li, Zhiming Cui, Lichi Zhang, Sheng Wang, Chenjin Lei, Xi Ouyang, Dongdong Chen, Zixu Zhuang, Xiangyu Zhao, Yajia Gu, Zaiyi Liu, Chunling Liu, Dinggang Shen, Jie-Zhi Cheng
Abstract: Mammographic image analysis is a fundamental problem in the computer-aided diagnosis scheme, which has recently made remarkable progress with the advance of deep learning. However, the construction of a deep learning model requires training data that are large and sufficiently diverse in terms of image style and quality. In particular, the diversity of image style may be majorly attributed to the vendor factor. However, mammogram collection from vendors as many as possible is very expensive and sometimes impractical for laboratory-scale studies. Accordingly, to further augment the generalization capability of deep learning models to various vendors with limited resources, a new contrastive learning scheme is developed. Specifically, the backbone network is firstly trained with a multi-style and multi-view unsupervised self-learning scheme for the embedding of invariant features to various vendor styles. Afterward, the backbone network is then recalibrated to the downstream tasks of mass detection, multi-view mass matching, BI-RADS classification and breast density classification with specific supervised learning. The proposed method is evaluated with mammograms from four vendors and two unseen public datasets. The experimental results suggest that our approach can effectively improve analysis performance on both seen and unseen domains, and outperforms many state-of-the-art (SOTA) generalization methods.
14.A geometry-aware deep network for depth estimation in monocular endoscopy
Authors:Yongming Yang, Shuwei Shao, Tao Yang, Peng Wang, Zhuo Yang, Chengdong Wu, Hao Liu
Abstract: Monocular depth estimation is critical for endoscopists to perform spatial perception and 3D navigation of surgical sites. However, most of the existing methods ignore the important geometric structural consistency, which inevitably leads to performance degradation and distortion of 3D reconstruction. To address this issue, we introduce a gradient loss to penalize edge fluctuations ambiguous around stepped edge structures and a normal loss to explicitly express the sensitivity to frequently small structures, and propose a geometric consistency loss to spreads the spatial information across the sample grids to constrain the global geometric anatomy structures. In addition, we develop a synthetic RGB-Depth dataset that captures the anatomical structures under reflections and illumination variations. The proposed method is extensively validated across different datasets and clinical images and achieves mean RMSE values of 0.066 (stomach), 0.029 (small intestine), and 0.139 (colon) on the EndoSLAM dataset. The generalizability of the proposed method achieves mean RMSE values of 12.604 (T1-L1), 9.930 (T2-L2), and 13.893 (T3-L3) on the ColonDepth dataset. The experimental results show that our method exceeds previous state-of-the-art competitors and generates more consistent depth maps and reasonable anatomical structures. The quality of intraoperative 3D structure perception from endoscopic videos of the proposed method meets the accuracy requirements of video-CT registration algorithms for endoscopic navigation. The dataset and the source code will be available at https://github.com/YYM-SIA/LINGMI-MR.
15.Omni Aggregation Networks for Lightweight Image Super-Resolution
Authors:Hang Wang, Xuanhong Chen, Bingbing Ni, Yutian Liu, Jinfan Liu
Abstract: While lightweight ViT framework has made tremendous progress in image super-resolution, its uni-dimensional self-attention modeling, as well as homogeneous aggregation scheme, limit its effective receptive field (ERF) to include more comprehensive interactions from both spatial and channel dimensions. To tackle these drawbacks, this work proposes two enhanced components under a new Omni-SR architecture. First, an Omni Self-Attention (OSA) block is proposed based on dense interaction principle, which can simultaneously model pixel-interaction from both spatial and channel dimensions, mining the potential correlations across omni-axis (i.e., spatial and channel). Coupling with mainstream window partitioning strategies, OSA can achieve superior performance with compelling computational budgets. Second, a multi-scale interaction scheme is proposed to mitigate sub-optimal ERF (i.e., premature saturation) in shallow models, which facilitates local propagation and meso-/global-scale interactions, rendering an omni-scale aggregation building block. Extensive experiments demonstrate that Omni-SR achieves record-high performance on lightweight super-resolution benchmarks (e.g., 26.95 dB@Urban100 $\times 4$ with only 792K parameters). Our code is available at \url{https://github.com/Francis0625/Omni-SR}.
16.Revisiting Implicit Neural Representations in Low-Level Vision
Authors:Wentian Xu, Jianbo Jiao
Abstract: Implicit Neural Representation (INR) has been emerging in computer vision in recent years. It has been shown to be effective in parameterising continuous signals such as dense 3D models from discrete image data, e.g. the neural radius field (NeRF). However, INR is under-explored in 2D image processing tasks. Considering the basic definition and the structure of INR, we are interested in its effectiveness in low-level vision problems such as image restoration. In this work, we revisit INR and investigate its application in low-level image restoration tasks including image denoising, super-resolution, inpainting, and deblurring. Extensive experimental evaluations suggest the superior performance of INR in several low-level vision tasks with limited resources, outperforming its counterparts by over 2dB. Code and models are available at https://github.com/WenTXuL/LINR
17.A data augmentation perspective on diffusion models and retrieval
Authors:Max F. Burg, Florian Wenzel, Dominik Zietlow, Max Horn, Osama Makansi, Francesco Locatello, Chris Russell
Abstract: Diffusion models excel at generating photorealistic images from text-queries. Naturally, many approaches have been proposed to use these generative abilities to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large noisily supervised, but nonetheless, annotated datasets. It is an open question whether the generalization capabilities of diffusion models beyond using the additional data of the pre-training process for augmentation lead to improved downstream performance. We perform a systematic evaluation of existing methods to generate images from diffusion models and study new extensions to assess their benefit for data augmentation. While we find that personalizing diffusion models towards the target data outperforms simpler prompting strategies, we also show that using the training data of the diffusion model alone, via a simple nearest neighbor retrieval procedure, leads to even stronger downstream performance. Overall, our study probes the limitations of diffusion models for data augmentation but also highlights its potential in generating new training data to improve performance on simple downstream vision tasks.
18.Image-text Retrieval via preserving main Semantics of Vision
Authors:Xu Zhang, Xinzheng Niu, Philippe Fournier-Viger, Xudong Dai
Abstract: Image-text retrieval is one of the major tasks of cross-modal retrieval. Several approaches for this task map images and texts into a common space to create correspondences between the two modalities. However, due to the content (semantics) richness of an image, redundant secondary information in an image may cause false matches. To address this issue, this paper presents a semantic optimization approach, implemented as a Visual Semantic Loss (VSL), to assist the model in focusing on an image's main content. This approach is inspired by how people typically annotate the content of an image by describing its main content. Thus, we leverage the annotated texts corresponding to an image to assist the model in capturing the main content of the image, reducing the negative impact of secondary content. Extensive experiments on two benchmark datasets (MSCOCO and Flickr30K) demonstrate the superior performance of our method. The code is available at: https://github.com/ZhangXu0963/VSL.
19.Indian Sign Language Recognition Using Mediapipe Holistic
Authors:Dr. Velmathi G, Kaushal Goyal
Abstract: Deaf individuals confront significant communication obstacles on a daily basis. Their inability to hear makes it difficult for them to communicate with those who do not understand sign language. Moreover, it presents difficulties in educational, occupational, and social contexts. By providing alternative communication channels, technology can play a crucial role in overcoming these obstacles. One such technology that can facilitate communication between deaf and hearing individuals is sign language recognition. We will create a robust system for sign language recognition in order to convert Indian Sign Language to text or speech. We will evaluate the proposed system and compare CNN and LSTM models. Since there are both static and gesture sign languages, a robust model is required to distinguish between them. In this study, we discovered that a CNN model captures letters and characters for recognition of static sign language better than an LSTM model, but it outperforms CNN by monitoring hands, faces, and pose in gesture sign language phrases and sentences. The creation of a text-to-sign language paradigm is essential since it will enhance the sign language-dependent deaf and hard-of-hearing population's communication skills. Even though the sign-to-text translation is just one side of communication, not all deaf or hard-of-hearing people are proficient in reading or writing text. Some may have difficulty comprehending written language due to educational or literacy issues. Therefore, a text-to-sign language paradigm would allow them to comprehend text-based information and participate in a variety of social, educational, and professional settings. Keywords: deaf and hard-of-hearing, DHH, Indian sign language, CNN, LSTM, static and gesture sign languages, text-to-sign language model, MediaPipe Holistic, sign language recognition, SLR, SLT
20.Social Distance Detection Using Deep Learning And Risk Management System
Authors:Dr. Sangeetha R. G, Jaya Aravindh V. V
Abstract: An outbreak of the coronavirus disease which occurred three years later and it has hit the world again with many evolutions. The effects on the human race have already been profound. We can only safeguard ourselves against this pandemic by mandating a "Face Mask" also maintaining the "Social Distancing." The necessity of protective face masks in all gatherings is required by many civil institutions in India. As a result of the substantial human resource utilization, personally examining the whole country with a huge population like India, to determine whether the execution of mask wearing and social distance maintained is unfeasible. The COVID-19 Social Distancing Detector System is a single-stage detector that employs deep learning to integrate high-end semantic data to a CNN module in order to maintain social distances and simultaneously monitor violations within a specified region. By deploying current Security footages, CCTV cameras, and computer vision (CV), it will also be able to identify those who are experiencing the calamity of social separation. Providing tools for safety and security, this technology disposes the need for a labor-force based surveillance system, yet a manual governing body is still required to monitor, track, and inform on the violations that are committed. Any sort of infrastructure, including universities, hospitals, offices of the government, schools, and building sites, can employ the technology. Therefore, the risk management system created to report and analyze video streams along with the social distance detector system might help to ensure our protection and security as well as the security of our loved ones. Furthermore, we will discuss about deployment and improvement of the project overall.
21.PREIM3D: 3D Consistent Precise Image Attribute Editing from a Single Image
Authors:Jianhui Li, Jianmin Li, Haoji Zhang, Shilong Liu, Zhengyi Wang, Zihao Xiao, Kaiwen Zheng, Jun Zhu
Abstract: We study the 3D-aware image attribute editing problem in this paper, which has wide applications in practice. Recent methods solved the problem by training a shared encoder to map images into a 3D generator's latent space or by per-image latent code optimization and then edited images in the latent space. Despite their promising results near the input view, they still suffer from the 3D inconsistency of produced images at large camera poses and imprecise image attribute editing, like affecting unspecified attributes during editing. For more efficient image inversion, we train a shared encoder for all images. To alleviate 3D inconsistency at large camera poses, we propose two novel methods, an alternating training scheme and a multi-view identity loss, to maintain 3D consistency and subject identity. As for imprecise image editing, we attribute the problem to the gap between the latent space of real images and that of generated images. We compare the latent space and inversion manifold of GAN models and demonstrate that editing in the inversion manifold can achieve better results in both quantitative and qualitative evaluations. Extensive experiments show that our method produces more 3D consistent images and achieves more precise image editing than previous work. Source code and pretrained models can be found on our project page: https://mybabyyh.github.io/Preim3D/
22.Not Only Generative Art: Stable Diffusion for Content-Style Disentanglement in Art Analysis
Authors:Yankun Wu, Yuta Nakashima, Noa Garcia
Abstract: The duality of content and style is inherent to the nature of art. For humans, these two elements are clearly different: content refers to the objects and concepts in the piece of art, and style to the way it is expressed. This duality poses an important challenge for computer vision. The visual appearance of objects and concepts is modulated by the style that may reflect the author's emotions, social trends, artistic movement, etc., and their deep comprehension undoubtfully requires to handle both. A promising step towards a general paradigm for art analysis is to disentangle content and style, whereas relying on human annotations to cull a single aspect of artworks has limitations in learning semantic concepts and the visual appearance of paintings. We thus present GOYA, a method that distills the artistic knowledge captured in a recent generative model to disentangle content and style. Experiments show that synthetically generated images sufficiently serve as a proxy of the real distribution of artworks, allowing GOYA to separately represent the two elements of art while keeping more information than existing methods.
23.Feature-compatible Progressive Learning for Video Copy Detection
Authors:Wenhao Wang, Yifan Sun, Yi Yang
Abstract: Video Copy Detection (VCD) has been developed to identify instances of unauthorized or duplicated video content. This paper presents our first and second solutions to the Meta AI Video Similarity Challenge (VSC22), CVPR 2023. In order to compete in this challenge, we propose Feature-Compatible Progressive Learning (FCPL) for VCD. FCPL trains various models that produce mutually-compatible features, meaning that the features derived from multiple distinct models can be directly compared with one another. We find this mutual compatibility enables feature ensemble. By implementing progressive learning and utilizing labeled ground truth pairs, we effectively gradually enhance performance. Experimental results demonstrate the superiority of the proposed FCPL over other competitors. Our code is available at https://github.com/WangWenhao0716/VSC-DescriptorTrack-Submission and https://github.com/WangWenhao0716/VSC-MatchingTrack-Submission.
24.FIANCEE: Faster Inference of Adversarial Networks via Conditional Early Exits
Authors:Polina Karpikova Samsung AI Center Higher School of Economics, Radionova Ekaterina Samsung AI Center, Anastasia Yaschenko Samsung AI Center Higher School of Economics, Andrei Spiridonov Samsung AI Center, Leonid Kostyushko Lomonosov Moscow State University, Riccardo Fabbricatore Samsung AI Center, Aleksei Ivakhnenko Samsung AI Center
Abstract: Generative DNNs are a powerful tool for image synthesis, but they are limited by their computational load. On the other hand, given a trained model and a task, e.g. faces generation within a range of characteristics, the output image quality will be unevenly distributed among images with different characteristics. It follows, that we might restrain the models complexity on some instances, maintaining a high quality. We propose a method for diminishing computations by adding so-called early exit branches to the original architecture, and dynamically switching the computational path depending on how difficult it will be to render the output. We apply our method on two different SOTA models performing generative tasks: generation from a semantic map, and cross-reenactment of face expressions; showing it is able to output images with custom lower-quality thresholds. For a threshold of LPIPS <=0.1, we diminish their computations by up to a half. This is especially relevant for real-time applications such as synthesis of faces, when quality loss needs to be contained, but most of the inputs need fewer computations than the complex instances.
25.LA3: Efficient Label-Aware AutoAugment
Authors:Mingjun Zhao, Shan Lu, Zixuan Wang, Xiaoli Wang, Di Niu
Abstract: Automated augmentation is an emerging and effective technique to search for data augmentation policies to improve generalizability of deep neural network training. Most existing work focuses on constructing a unified policy applicable to all data samples in a given dataset, without considering sample or class variations. In this paper, we propose a novel two-stage data augmentation algorithm, named Label-Aware AutoAugment (LA3), which takes advantage of the label information, and learns augmentation policies separately for samples of different labels. LA3 consists of two learning stages, where in the first stage, individual augmentation methods are evaluated and ranked for each label via Bayesian Optimization aided by a neural predictor, which allows us to identify effective augmentation techniques for each label under a low search cost. And in the second stage, a composite augmentation policy is constructed out of a selection of effective as well as complementary augmentations, which produces significant performance boost and can be easily deployed in typical model training. Extensive experiments demonstrate that LA3 achieves excellent performance matching or surpassing existing methods on CIFAR-10 and CIFAR-100, and achieves a new state-of-the-art ImageNet accuracy of 79.97% on ResNet-50 among auto-augmentation methods, while maintaining a low computational cost.
26.Search-Map-Search: A Frame Selection Paradigm for Action Recognition
Authors:Mingjun Zhao, Yakun Yu, Xiaoli Wang, Lei Yang, Di Niu
Abstract: Despite the success of deep learning in video understanding tasks, processing every frame in a video is computationally expensive and often unnecessary in real-time applications. Frame selection aims to extract the most informative and representative frames to help a model better understand video content. Existing frame selection methods either individually sample frames based on per-frame importance prediction, without considering interaction among frames, or adopt reinforcement learning agents to find representative frames in succession, which are costly to train and may lead to potential stability issues. To overcome the limitations of existing methods, we propose a Search-Map-Search learning paradigm which combines the advantages of heuristic search and supervised learning to select the best combination of frames from a video as one entity. By combining search with learning, the proposed method can better capture frame interactions while incurring a low inference overhead. Specifically, we first propose a hierarchical search method conducted on each training video to search for the optimal combination of frames with the lowest error on the downstream task. A feature mapping function is then learned to map the frames of a video to the representation of its target optimal frame combination. During inference, another search is performed on an unseen video to select a combination of frames whose feature representation is close to the projected feature representation. Extensive experiments based on several action recognition benchmarks demonstrate that our frame selection method effectively improves performance of action recognition models, and significantly outperforms a number of competitive baselines.
27.Ensembling Instance and Semantic Segmentation for Panoptic Segmentation
Authors:Mehmet Yildirim, Yogesh Langhe
Abstract: We demonstrate our solution for the 2019 COCO panoptic segmentation task. Our method first performs instance segmentation and semantic segmentation separately, then combines the two to generate panoptic segmentation results. To enhance the performance, we add several expert models of Mask R-CNN in instance segmentation to tackle the data imbalance problem in the training data; also HTC model is adopted yielding our best instance segmentation results. In semantic segmentation, we trained several models with various backbones and use an ensemble strategy which further boosts the segmentation results. In the end, we analyze various combinations of instance and semantic segmentation, and report on their performance for the final panoptic segmentation results. Our best model achieves $PQ$ 47.1 on 2019 COCO panoptic test-dev data.
28.Noisy Universal Domain Adaptation via Divergence Optimization for Visual Recognition
Authors:Qing Yu, Atsushi Hashimoto, Yoshitaka Ushiku
Abstract: To transfer the knowledge learned from a labeled source domain to an unlabeled target domain, many studies have worked on universal domain adaptation (UniDA), where there is no constraint on the label sets of the source domain and target domain. However, the existing UniDA methods rely on source samples with correct annotations. Due to the limited resources in the real world, it is difficult to obtain a large amount of perfectly clean labeled data in a source domain in some applications. As a result, we propose a novel realistic scenario named Noisy UniDA, in which classifiers are trained using noisy labeled data from the source domain as well as unlabeled domain data from the target domain that has an uncertain class distribution. A multi-head convolutional neural network framework is proposed in this paper to address all of the challenges faced in the Noisy UniDA at once. Our network comprises a single common feature generator and multiple classifiers with various decision bounds. We can detect noisy samples in the source domain, identify unknown classes in the target domain, and align the distribution of the source and target domains by optimizing the divergence between the outputs of the various classifiers. The proposed method outperformed the existing methods in most of the settings after a thorough analysis of the various domain adaption scenarios. The source code is available at \url{https://github.com/YU1ut/Divergence-Optimization}.
29.A baseline on continual learning methods for video action recognition
Authors:Giulia Castagnolo, Concetto Spampinato, Francesco Rundo, Daniela Giordano, Simone Palazzo
Abstract: Continual learning has recently attracted attention from the research community, as it aims to solve long-standing limitations of classic supervisedly-trained models. However, most research on this subject has tackled continual learning in simple image classification scenarios. In this paper, we present a benchmark of state-of-the-art continual learning methods on video action recognition. Besides the increased complexity due to the temporal dimension, the video setting imposes stronger requirements on computing resources for top-performing rehearsal methods. To counteract the increased memory requirements, we present two method-agnostic variants for rehearsal methods, exploiting measures of either model confidence or data information to select memorable samples. Our experiments show that, as expected from the literature, rehearsal methods outperform other approaches; moreover, the proposed memory-efficient variants are shown to be effective at retaining a certain level of performance with a smaller buffer size.
30.DocMAE: Document Image Rectification via Self-supervised Representation Learning
Authors:Shaokai Liu, Hao Feng, Wengang Zhou, Houqiang Li, Cong Liu, Feng Wu
Abstract: Tremendous efforts have been made on document image rectification, but how to learn effective representation of such distorted images is still under-explored. In this paper, we present DocMAE, a novel self-supervised framework for document image rectification. Our motivation is to encode the structural cues in document images by leveraging masked autoencoder to benefit the rectification, i.e., the document boundaries, and text lines. Specifically, we first mask random patches of the background-excluded document images and then reconstruct the missing pixels. With such a self-supervised learning approach, the network is encouraged to learn the intrinsic structure of deformed documents by restoring document boundaries and missing text lines. Transfer performance in the downstream rectification task validates the effectiveness of our method. Extensive experiments are conducted to demonstrate the effectiveness of our method.
31.Breast cancer detection using deep learning
Authors:Gayathri Girish, Ponnathota Spandana, Badrish Vasu
Abstract: Objective: This paper proposes a deep learning model for breast cancer detection from reconstructed images of microwave imaging scan data and aims to improve the accuracy and efficiency of breast tumor detection, which could have a significant impact on breast cancer diagnosis and treatment. Methods: Our framework consists of different convolutional neural network (CNN) architectures for feature extraction and a region-based CNN for tumor detection. We use 7 different architectures: DenseNet201, ResNet50, InceptionV3, InceptionResNetV3, MobileNetV2, NASNetMobile and NASNetLarge and compare its performance to find the best architecture out of the seven. An experimental dataset of MRI-derived breast phantoms was used. Results: NASNetLarge is the best architecture which can be used for the CNN model with accuracy of 88.41% and loss of 27.82%. Given that the model's AUC is 0.786, it can be concluded that it is suitable for use in its present form, while it could be improved upon and trained on other datasets that are comparable. Impact: One of the main causes of death in women is breast cancer, and early identification is essential for enhancing the results for patients. Due to its non-invasiveness and capacity to produce high-resolution images, microwave imaging is a potential tool for breast cancer screening. The complexity of tumors makes it difficult to adequately detect them in microwave images. The results of this research show that deep learning has a lot of potential for breast cancer detection in microwave images
32.LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields
Authors:Tang Tao, Longfei Gao, Guangrun Wang, Peng Chen, Dayang Hao, Xiaodan Liang, Mathieu Salzmann, Kaicheng Yu
Abstract: We introduce a new task, novel view synthesis for LiDAR sensors. While traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views, they fall short in producing accurate and realistic LiDAR patterns, because the renderers they rely on exploit game engines, which are not differentiable. We address this by formulating, to the best of our knowledge, the first differentiable LiDAR renderer, and propose an end-to-end framework, LiDAR-NeRF, leveraging a neural radiance field (NeRF) to enable jointly learning the geometry and the attributes of 3D points. To evaluate the effectiveness of our approach, we establish an object-centric multi-view LiDAR dataset, dubbed NeRF-MVL. It contains observations of objects from 9 categories seen from 360-degree viewpoints captured with multiple LiDAR sensors. Our extensive experiments on the scene-level KITTI-360 dataset, and on our object-level NeRF-MVL show that our LiDAR- NeRF surpasses the model-based algorithms significantly.
33.Radar-Camera Fusion for Object Detection and Semantic Segmentation in Autonomous Driving: A Comprehensive Review
Authors:Shanliang Yao, Runwei Guan, Xiaoyu Huang, Zhuoxiao Li, Xiangyu Sha, Yong Yue, Eng Gee Lim, Hyungjoon Seo, Ka Lok Man, Xiaohui Zhu, Yutao Yue
Abstract: Driven by deep learning techniques, perception technology in autonomous driving has developed rapidly in recent years. To achieve accurate and robust perception capabilities, autonomous vehicles are often equipped with multiple sensors, making sensor fusion a crucial part of the perception system. Among these fused sensors, radars and cameras enable a complementary and cost-effective perception of the surrounding environment regardless of lighting and weather conditions. This review aims to provide a comprehensive guideline for radar-camera fusion, particularly concentrating on perception tasks related to object detection and semantic segmentation. Based on the principles of the radar and camera sensors, we delve into the data processing process and representations, followed by an in-depth analysis and summary of radar-camera fusion datasets. In the review of methodologies in radar-camera fusion, we address interrogative questions, including "why to fuse", "what to fuse", "where to fuse", "when to fuse", and "how to fuse", subsequently discussing various challenges and potential research directions within this domain. To ease the retrieval and comparison of datasets and fusion methods, we also provide an interactive website: https://XJTLU-VEC.github.io/Radar-Camera-Fusion.
34.NTIRE 2023 Challenge on Light Field Image Super-Resolution: Dataset, Methods and Results
Authors:Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang Yang, Radu Timofte, Yulan Guo
Abstract: In this report, we summarize the first NTIRE challenge on light field (LF) image super-resolution (SR), which aims at super-resolving LF images under the standard bicubic degradation with a magnification factor of 4. This challenge develops a new LF dataset called NTIRE-2023 for validation and test, and provides a toolbox called BasicLFSR to facilitate model development. Compared with single image SR, the major challenge of LF image SR lies in how to exploit complementary angular information from plenty of views with varying disparities. In total, 148 participants have registered the challenge, and 11 teams have successfully submitted results with PSNR scores higher than the baseline method LF-InterNet \cite{LF-InterNet}. These newly developed methods have set new state-of-the-art in LF image SR, e.g., the winning method achieves around 1 dB PSNR improvement over the existing state-of-the-art method DistgSSR \cite{DistgLF}. We report the solutions proposed by the participants, and summarize their common trends and useful tricks. We hope this challenge can stimulate future research and inspire new ideas in LF image SR.
35.SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation
Authors:Nikos Athanasiou, Mathis Petrovich, Michael J. Black, Gül Varol
Abstract: Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, we find training on additional synthetic GPT-guided compositional motions improves text-to-motion generation.
36.A Study on Reproducibility and Replicability of Table Structure Recognition Methods
Authors:Kehinde Ajayi, Muntabhir Hasan Choudhury, Sarah Rajtmajer, Jian Wu
Abstract: Concerns about reproducibility in artificial intelligence (AI) have emerged, as researchers have reported unsuccessful attempts to directly reproduce published findings in the field. Replicability, the ability to affirm a finding using the same procedures on new data, has not been well studied. In this paper, we examine both reproducibility and replicability of a corpus of 16 papers on table structure recognition (TSR), an AI task aimed at identifying cell locations of tables in digital documents. We attempt to reproduce published results using codes and datasets provided by the original authors. We then examine replicability using a dataset similar to the original as well as a new dataset, GenTSR, consisting of 386 annotated tables extracted from scientific papers. Out of 16 papers studied, we reproduce results consistent with the original in only four. Two of the four papers are identified as replicable using the similar dataset under certain IoU values. No paper is identified as replicable using the new dataset. We offer observations on the causes of irreproducibility and irreplicability. All code and data are available on Codeocean at https://codeocean.com/capsule/6680116/tree.
37.Road Genome: A Topology Reasoning Benchmark for Scene Understanding in Autonomous Driving
Authors:Huijie Wang, Zhenbo Liu, Yang Li, Tianyu Li, Li Chen, Chonghao Sima, Yuting Wang, Shengyin Jiang, Feng Wen, Hang Xu, Ping Luo, Junchi Yan, Wei Zhang, Jun Yao, Yu Qiao, Hongyang Li
Abstract: Understanding the complex traffic environment is crucial for self-driving vehicles. Existing benchmarks in autonomous driving mainly cast scene understanding as perception problems, e.g., perceiving lanelines with vanilla detection or segmentation methods. As such, we argue that the perception pipeline provides limited information for autonomous vehicles to drive in the right way, especially without the aid of high-definition (HD) map. For instance, following the wrong traffic signal at a complicated crossroad would lead to a catastrophic incident. By introducing Road Genome (OpenLane-V2), we intend to shift the community's attention and take a step further beyond perception - to the task of topology reasoning for scene structure. The goal of Road Genome is to understand the scene structure by investigating the relationship of perceived entities among traffic elements and lanes. Built on top of prevailing datasets, the newly minted benchmark comprises 2,000 sequences of multi-view images captured from diverse real-world scenarios. We annotate data with high-quality manual checks in the loop. Three subtasks compromise the gist of Road Genome, including the 3D lane detection inherited from OpenLane. We have/will host Challenges in the upcoming future at top-tiered venues.
38.Securing Neural Networks with Knapsack Optimization
Authors:Yakir Gorski, Shai Avidan
Abstract: Deep learning inference brings together the data and the Convolutional Neural Network (CNN). This is problematic in case the user wants to preserve the privacy of the data and the service provider does not want to reveal the weights of his CNN. Secure Inference allows the two parties to engage in a protocol that preserves their respective privacy concerns, while revealing only the inference result to the user. This is known as Multi-Party Computation (MPC). A major bottleneck of MPC algorithms is communication, as the parties must send data back and forth. The linear component of a CNN (i.e. convolutions) can be done efficiently with minimal communication, but the non-linear part (i.e., ReLU) requires the bulk of communication bandwidth. We propose two ways to accelerate Secure Inference. The first is based on the observation that the ReLU outcome of many convolutions is highly correlated. Therefore, we replace the per pixel ReLU operation by a ReLU operation per patch. Each layer in the network will benefit from a patch of a different size and we devise an algorithm to choose the optimal set of patch sizes through a novel reduction of the problem to a knapsack problem. The second way to accelerate Secure Inference is based on cutting the number of bit comparisons required for a secure ReLU operation. We demonstrate the cumulative effect of these tools in the semi-honest secure 3-party setting for four problems: Classifying ImageNet using ResNet50 backbone, classifying CIFAR100 using ResNet18 backbone, semantic segmentation of ADE20K using MobileNetV2 backbone and semantic segmentation of Pascal VOC 2012 using ResNet50 backbone. Our source code is publicly available: $\href{https://github.com/yg320/secure_inference}{\text{https://github.com/yg320/secure_inference}}$
39.ReLight My NeRF: A Dataset for Novel View Synthesis and Relighting of Real World Objects
Authors:Marco Toschi, Riccardo De Matteo, Riccardo Spezialetti, Daniele De Gregorio, Luigi Di Stefano, Samuele Salti
Abstract: In this paper, we focus on the problem of rendering novel views from a Neural Radiance Field (NeRF) under unobserved light conditions. To this end, we introduce a novel dataset, dubbed ReNe (Relighting NeRF), framing real world objects under one-light-at-time (OLAT) conditions, annotated with accurate ground-truth camera and light poses. Our acquisition pipeline leverages two robotic arms holding, respectively, a camera and an omni-directional point-wise light source. We release a total of 20 scenes depicting a variety of objects with complex geometry and challenging materials. Each scene includes 2000 images, acquired from 50 different points of views under 40 different OLAT conditions. By leveraging the dataset, we perform an ablation study on the relighting capability of variants of the vanilla NeRF architecture and identify a lightweight architecture that can render novel views of an object under novel light conditions, which we use to establish a non-trivial baseline for the dataset. Dataset and benchmark are available at https://eyecan-ai.github.io/rene.
40.Implicit Temporal Modeling with Learnable Alignment for Video Recognition
Authors:Shuyuan Tu, Qi Dai, Zuxuan Wu, Zhi-Qi Cheng, Han Hu, Yu-Gang Jiang
Abstract: Contrastive language-image pretraining (CLIP) has demonstrated remarkable success in various image tasks. However, how to extend CLIP with effective temporal modeling is still an open and crucial problem. Existing factorized or joint spatial-temporal modeling trades off between the efficiency and performance. While modeling temporal information within straight through tube is widely adopted in literature, we find that simple frame alignment already provides enough essence without temporal attention. To this end, in this paper, we proposed a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance. Specifically, for a frame pair, an interactive point is predicted in each frame, serving as a mutual information rich region. By enhancing the features around the interactive point, two frames are implicitly aligned. The aligned features are then pooled into a single token, which is leveraged in the subsequent spatial self-attention. Our method allows eliminating the costly or insufficient temporal self-attention in video. Extensive experiments on benchmarks demonstrate the superiority and generality of our module. Particularly, the proposed ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H. Code is released at https://github.com/Francis-Rings/ILA .
41.Reconstructing Signing Avatars From Video Using Linguistic Priors
Authors:Maria-Paola Forte, Peter Kulits, Chun-Hao Huang, Vasileios Choutas, Dimitrios Tzionas, Katherine J. Kuchenbecker, Michael J. Black
Abstract: Sign language (SL) is the primary method of communication for the 70 million Deaf people around the world. Video dictionaries of isolated signs are a core SL learning tool. Replacing these with 3D avatars can aid learning and enable AR/VR applications, improving access to technology and online media. However, little work has attempted to estimate expressive 3D avatars from SL video; occlusion, noise, and motion blur make this task difficult. We address this by introducing novel linguistic priors that are universally applicable to SL and provide constraints on 3D hand pose that help resolve ambiguities within isolated signs. Our method, SGNify, captures fine-grained hand pose, facial expression, and body movement fully automatically from in-the-wild monocular SL videos. We evaluate SGNify quantitatively by using a commercial motion-capture system to compute 3D avatars synchronized with monocular video. SGNify outperforms state-of-the-art 3D body-pose- and shape-estimation methods on SL videos. A perceptual study shows that SGNify's 3D reconstructions are significantly more comprehensible and natural than those of previous methods and are on par with the source videos. Code and data are available at $\href{http://sgnify.is.tue.mpg.de}{\text{sgnify.is.tue.mpg.de}}$.
42.Segment Anything Model for Medical Image Analysis: an Experimental Study
Authors:Maciej A. Mazurowski, Haoyu Dong, Hanxue Gu, Jichen Yang, Nicholas Konz, Yixin Zhang
Abstract: Training segmentation models for medical images continues to be challenging due to the limited availability and acquisition expense of data annotations. Segment Anything Model (SAM) is a foundation model trained on over 1 billion annotations, predominantly for natural images, that is intended to be able to segment the user-defined object of interest in an interactive manner. Despite its impressive performance on natural images, it is unclear how the model is affected when shifting to medical image domains. Here, we perform an extensive evaluation of SAM's ability to segment medical images on a collection of 11 medical imaging datasets from various modalities and anatomies. In our experiments, we generated point prompts using a standard method that simulates interactive segmentation. Experimental results show that SAM's performance based on single prompts highly varies depending on the task and the dataset, i.e., from 0.1135 for a spine MRI dataset to 0.8650 for a hip x-ray dataset, evaluated by IoU. Performance appears to be high for tasks including well-circumscribed objects with unambiguous prompts and poorer in many other scenarios such as segmentation of tumors. When multiple prompts are provided, performance improves only slightly overall, but more so for datasets where the object is not contiguous. An additional comparison to RITM showed a much better performance of SAM for one prompt but a similar performance of the two methods for a larger number of prompts. We conclude that SAM shows impressive performance for some datasets given the zero-shot learning setup but poor to moderate performance for multiple other datasets. While SAM as a model and as a learning paradigm might be impactful in the medical imaging domain, extensive research is needed to identify the proper ways of adapting it in this domain.
43.Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
Authors:Johannes Lehner, Benedikt Alkin, Andreas Fürst, Elisabeth Rumetshofer, Lukas Miklautz, Sepp Hochreiter
Abstract: Masked Image Modeling (MIM) methods, like Masked Autoencoders (MAE), efficiently learn a rich representation of the input. However, for adapting to downstream tasks, they require a sufficient amount of labeled data since their rich features capture not only objects but also less relevant image background. In contrast, Instance Discrimination (ID) methods focus on objects. In this work, we study how to combine the efficiency and scalability of MIM with the ability of ID to perform downstream classification in the absence of large amounts of labeled data. To this end, we introduce Masked Autoencoder Contrastive Tuning (MAE-CT), a sequential approach that applies Nearest Neighbor Contrastive Learning (NNCLR) to a pre-trained MAE. MAE-CT tunes the rich features such that they form semantic clusters of objects without using any labels. Applied to large and huge Vision Transformer (ViT) models, MAE-CT matches or excels previous self-supervised methods trained on ImageNet in linear probing, k-NN and low-shot classification accuracy as well as in unsupervised clustering accuracy. Notably, similar results can be achieved without additional image augmentations. While ID methods generally rely on hand-crafted augmentations to avoid shortcut learning, we find that nearest neighbor lookup is sufficient and that this data-driven augmentation effect improves with model size. MAE-CT is compute efficient. For instance, starting from a MAE pre-trained ViT-L/16, MAE-CT increases the ImageNet 1% low-shot accuracy from 67.7% to 72.6%, linear probing accuracy from 76.0% to 80.2% and k-NN accuracy from 60.6% to 79.1% in just five hours using eight A100 GPUs.
44.GenCorres: Consistent Shape Matching via Coupled Implicit-Explicit Shape Generative Models
Authors:Haitao Yang, Xiangru Huang, Bo Sun, Chandrajit Bajaj, Qixing Huang
Abstract: This paper introduces GenCorres, a novel unsupervised joint shape matching (JSM) approach. The basic idea of GenCorres is to learn a parametric mesh generator to fit an unorganized deformable shape collection while constraining deformations between adjacent synthetic shapes to preserve geometric structures such as local rigidity and local conformality. GenCorres presents three appealing advantages over existing JSM techniques. First, GenCorres performs JSM among a synthetic shape collection whose size is much bigger than the input shapes and fully leverages the data-driven power of JSM. Second, GenCorres unifies consistent shape matching and pairwise matching (i.e., by enforcing deformation priors between adjacent synthetic shapes). Third, the generator provides a concise encoding of consistent shape correspondences. However, learning a mesh generator from an unorganized shape collection is challenging. It requires a good initial fitting to each shape and can easily get trapped by local minimums. GenCorres addresses this issue by learning an implicit generator from the input shapes, which provides intermediate shapes between two arbitrary shapes. We introduce a novel approach for computing correspondences between adjacent implicit surfaces and force the correspondences to preserve geometric structures and be cycle-consistent. Synthetic shapes of the implicit generator then guide initial fittings (i.e., via template-based deformation) for learning the mesh generator. Experimental results show that GenCorres considerably outperforms state-of-the-art JSM techniques on benchmark datasets. The synthetic shapes of GenCorres preserve local geometric features and yield competitive performance gains against state-of-the-art deformable shape generators.
45.Generalizing Neural Human Fitting to Unseen Poses With Articulated SE(3) Equivariance
Authors:Haiwen Feng, Peter Kulits, Shichen Liu, Michael J. Black, Victoria Abrevaya
Abstract: We address the problem of fitting a parametric human body model (SMPL) to point cloud data. Optimization-based methods require careful initialization and are prone to becoming trapped in local optima. Learning-based methods address this but do not generalize well when the input pose is far from those seen during training. For rigid point clouds, remarkable generalization has been achieved by leveraging SE(3)-equivariant networks, but these methods do not work on articulated objects. In this work we extend this idea to human bodies and propose ArtEq, a novel part-based SE(3)-equivariant neural architecture for SMPL model estimation from point clouds. Specifically, we learn a part detection network by leveraging local SO(3) invariance, and regress shape and pose using articulated SE(3) shape-invariant and pose-equivariant networks, all trained end-to-end. Our novel equivariant pose regression module leverages the permutation-equivariant property of self-attention layers to preserve rotational equivariance. Experimental results show that ArtEq can generalize to poses not seen during training, outperforming state-of-the-art methods by 74.5%, without requiring an optimization refinement step. Further, compared with competing works, our method is more than three orders of magnitude faster during inference and has 97.3% fewer parameters. The code and model will be available for research purposes at https://arteq.is.tue.mpg.de.
46.Collaborative Diffusion for Multi-Modal Face Generation and Editing
Authors:Ziqi Huang, Kelvin C. K. Chan, Yuming Jiang, Ziwei Liu
Abstract: Diffusion models arise as a powerful generative tool recently. Despite the great progress, existing diffusion models mainly focus on uni-modal control, i.e., the diffusion process is driven by only one modality of condition. To further unleash the users' creativity, it is desirable for the model to be controllable by multiple modalities simultaneously, e.g., generating and editing faces by describing the age (text-driven) while drawing the face shape (mask-driven). In this work, we present Collaborative Diffusion, where pre-trained uni-modal diffusion models collaborate to achieve multi-modal face generation and editing without re-training. Our key insight is that diffusion models driven by different modalities are inherently complementary regarding the latent denoising steps, where bilateral connections can be established upon. Specifically, we propose dynamic diffuser, a meta-network that adaptively hallucinates multi-modal denoising steps by predicting the spatial-temporal influence functions for each pre-trained uni-modal model. Collaborative Diffusion not only collaborates generation capabilities from uni-modal diffusion models, but also integrates multiple uni-modal manipulations to perform multi-modal editing. Extensive qualitative and quantitative experiments demonstrate the superiority of our framework in both image quality and condition consistency.
47.Nerfbusters: Removing Ghostly Artifacts from Casually Captured NeRFs
Authors:Frederik Warburg, Ethan Weber, Matthew Tancik, Aleksander Holynski, Angjoo Kanazawa
Abstract: Casually captured Neural Radiance Fields (NeRFs) suffer from artifacts such as floaters or flawed geometry when rendered outside the camera trajectory. Existing evaluation protocols often do not capture these effects, since they usually only assess image quality at every 8th frame of the training capture. To push forward progress in novel-view synthesis, we propose a new dataset and evaluation procedure, where two camera trajectories are recorded of the scene: one used for training, and the other for evaluation. In this more challenging in-the-wild setting, we find that existing hand-crafted regularizers do not remove floaters nor improve scene geometry. Thus, we propose a 3D diffusion-based method that leverages local 3D priors and a novel density-based score distillation sampling loss to discourage artifacts during NeRF optimization. We show that this data-driven prior removes floaters and improves scene geometry for casual captures.
48.Farm3D: Learning Articulated 3D Animals by Distilling 2D Diffusion
Authors:Tomas Jakab, Ruining Li, Shangzhe Wu, Christian Rupprecht, Andrea Vedaldi
Abstract: We present Farm3D, a method to learn category-specific 3D reconstructors for articulated objects entirely from "free" virtual supervision from a pre-trained 2D diffusion-based image generator. Recent approaches can learn, given a collection of single-view images of an object category, a monocular network to predict the 3D shape, albedo, illumination and viewpoint of any object occurrence. We propose a framework using an image generator like Stable Diffusion to generate virtual training data for learning such a reconstruction network from scratch. Furthermore, we include the diffusion model as a score to further improve learning. The idea is to randomise some aspects of the reconstruction, such as viewpoint and illumination, generating synthetic views of the reconstructed 3D object, and have the 2D network assess the quality of the resulting image, providing feedback to the reconstructor. Different from work based on distillation which produces a single 3D asset for each textual prompt in hours, our approach produces a monocular reconstruction network that can output a controllable 3D asset from a given image, real or generated, in only seconds. Our network can be used for analysis, including monocular reconstruction, or for synthesis, generating articulated assets for real-time applications such as video games.
49.Learning Sparse and Low-Rank Priors for Image Recovery via Iterative Reweighted Least Squares Minimization
Authors:Stamatios Lefkimmiatis, Iaroslav Koshelev
Abstract: We introduce a novel optimization algorithm for image recovery under learned sparse and low-rank constraints, which we parameterize as weighted extensions of the $\ell_p^p$-vector and $\mathcal S_p^p$ Schatten-matrix quasi-norms for $0\!<p\!\le1$, respectively. Our proposed algorithm generalizes the Iteratively Reweighted Least Squares (IRLS) method, used for signal recovery under $\ell_1$ and nuclear-norm constrained minimization. Further, we interpret our overall minimization approach as a recurrent network that we then employ to deal with inverse low-level computer vision problems. Thanks to the convergence guarantees that our IRLS strategy offers, we are able to train the derived reconstruction networks using a memory-efficient implicit back-propagation scheme, which does not pose any restrictions on their effective depth. To assess our networks' performance, we compare them against other existing reconstruction methods on several inverse problems, namely image deblurring, super-resolution, demosaicking and sparse recovery. Our reconstruction results are shown to be very competitive and in many cases outperform those of existing unrolled networks, whose number of parameters is orders of magnitude higher than that of our learned models.
50.Learning Neural Duplex Radiance Fields for Real-Time View Synthesis
Authors:Ziyu Wan, Christian Richardt, Aljaž Božič, Chao Li, Vijay Rengarajan, Seonghyeon Nam, Xiaoyu Xiang, Tuotuo Li, Bo Zhu, Rakesh Ranjan, Jing Liao
Abstract: Neural radiance fields (NeRFs) enable novel view synthesis with unprecedented visual quality. However, to render photorealistic images, NeRFs require hundreds of deep multilayer perceptron (MLP) evaluations - for each pixel. This is prohibitively expensive and makes real-time rendering infeasible, even on powerful modern GPUs. In this paper, we propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations that are fully compatible with the massively parallel graphics rendering pipeline. We represent scenes as neural radiance features encoded on a two-layer duplex mesh, which effectively overcomes the inherent inaccuracies in 3D surface reconstruction by learning the aggregated radiance information from a reliable interval of ray-surface intersections. To exploit local geometric relationships of nearby pixels, we leverage screen-space convolutions instead of the MLPs used in NeRFs to achieve high-quality appearance. Finally, the performance of the whole framework is further boosted by a novel multi-view distillation optimization strategy. We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.