arXiv daily

Robotics (cs.RO)

Tue, 12 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Digital Twin System for Home Service Robot Based on Motion Simulation

Authors:Zhengsong Jiang, Guohui Tian, Yongcheng Cui, Tiantian Liu, Yu Gu, Yifei Wang

Abstract: In order to improve the task execution capability of home service robot, and to cope with the problem that purely physical robot platforms cannot sense the environment and make decisions online, a method for building digital twin system for home service robot based on motion simulation is proposed. A reliable mapping of the home service robot and its working environment from physical space to digital space is achieved in three dimensions: geometric, physical and functional. In this system, a digital space-oriented URDF file parser is designed and implemented for the automatic construction of the robot geometric model. Next, the physical model is constructed from the kinematic equations of the robot and an improved particle swarm optimization algorithm is proposed for the inverse kinematic solution. In addition, to adapt to the home environment, functional attributes are used to describe household objects, thus improving the semantic description of the digital space for the real home environment. Finally, through geometric model consistency verification, physical model validity verification and virtual-reality consistency verification, it shows that the digital twin system designed in this paper can construct the robot geometric model accurately and completely, complete the operation of household objects successfully, and the digital twin system is effective and practical.

2.Gait Design of a Novel Arboreal Concertina Locomotion for Snake-like Robots

Authors:Shuoqi Chen, Aaron Roth

Abstract: In this paper, we propose a novel strategy for a snake robot to move straight up a cylindrical surface. Prior works on pole-climbing for a snake robot mainly utilized a rolling helix gait, and although proven to be efficient, it does not reassemble movements made by a natural snake. We take inspiration from nature and seek to imitate the Arboreal Concertina Locomotion (ACL) from real-life serpents. In order to represent the 3D curves that make up the key motion patterns of ACL, we establish a set of parametric equations that identify periodic functions, which produce a sequence of backbone curves. We then build up the gait equation using the curvature integration method, and finally, we propose a simple motion estimation strategy using virtual chassis and non-slip model assumptions. We present experimental results using a 20-DOF snake robot traversing outside of a straight pipe.

3.Learning Score-based Grasping Primitive for Human-assisting Dexterous Grasping

Authors:Tianhao Wu, Mingdong Wu, Jiyao Zhang, Yunchong Gan, Hao Dong

Abstract: The use of anthropomorphic robotic hands for assisting individuals in situations where human hands may be unavailable or unsuitable has gained significant importance. In this paper, we propose a novel task called human-assisting dexterous grasping that aims to train a policy for controlling a robotic hand's fingers to assist users in grasping objects. Unlike conventional dexterous grasping, this task presents a more complex challenge as the policy needs to adapt to diverse user intentions, in addition to the object's geometry. We address this challenge by proposing an approach consisting of two sub-modules: a hand-object-conditional grasping primitive called Grasping Gradient Field~(GraspGF), and a history-conditional residual policy. GraspGF learns `how' to grasp by estimating the gradient from a success grasping example set, while the residual policy determines `when' and at what speed the grasping action should be executed based on the trajectory history. Experimental results demonstrate the superiority of our proposed method compared to baselines, highlighting the user-awareness and practicality in real-world applications. The codes and demonstrations can be viewed at "https://sites.google.com/view/graspgf".

4.GVD-Exploration: An Efficient Autonomous Robot Exploration Framework Based on Fast Generalized Voronoi Diagram Extraction

Authors:Dingfeng Chen, Anxing Xiao, Meiyuan Zou, Wenzheng Chi, Jiankun Wang, Lining Sun

Abstract: Rapidly-exploring Random Trees (RRTs) are a popular technique for autonomous exploration of mobile robots. However, the random sampling used by RRTs can result in inefficient and inaccurate frontiers extraction, which affects the exploration performance. To address the issues of slow path planning and high path cost, we propose a framework that uses a generalized Voronoi diagram (GVD) based multi-choice strategy for robot exploration. Our framework consists of three components: a novel mapping model that uses an end-to-end neural network to construct GVDs of the environments in real time; a GVD-based heuristic scheme that accelerates frontiers extraction and reduces frontiers redundancy; and a multi-choice frontiers assignment scheme that considers different types of frontiers and enables the robot to make rational decisions during the exploration process. We evaluate our method on simulation and real-world experiments and show that it outperforms RRT-based exploration methods in terms of efficiency and robustness.

5.Inspection planning under execution uncertainty

Authors:Shmuel David Alpert, Kiril Solovey, Itzik Klein, Oren Salzman

Abstract: Autonomous inspection tasks necessitate effective path-planning mechanisms to efficiently gather observations from points of interest (POI). However, localization errors commonly encountered in urban environments can introduce execution uncertainty, posing challenges to the successful completion of such tasks. To tackle these challenges, we present IRIS-under uncertainty (IRIS-U^2), an extension of the incremental random inspection-roadmap search (IRIS) algorithm, that addresses the offline planning problem via an A*-based approach, where the planning process occurs prior the online execution. The key insight behind IRIS-U^2 is transforming the computed localization uncertainty, obtained through Monte Carlo (MC) sampling, into a POI probability. IRIS-U^2 offers insights into the expected performance of the execution task by providing confidence intervals (CI) for the expected coverage, expected path length, and collision probability, which becomes progressively tighter as the number of MC samples increase. The efficacy of IRIS-U^2 is demonstrated through a case study focusing on structural inspections of bridges. Our approach exhibits improved expected coverage, reduced collision probability, and yields increasingly-precise CIs as the number of MC samples grows. Furthermore, we emphasize the potential advantages of computing bounded sub-optimal solutions to reduce computation time while still maintaining the same CI boundaries.

6.An Efficient Trajectory Planner for Car-like Robots on Uneven Terrain

Authors:Long Xu, Kaixin Chai, Zhichao Han, Hong Liu, Chao Xu, Yanjun Cao, Fei Gao

Abstract: Autonomous navigation of ground robots on uneven terrain is being considered in more and more tasks. However, uneven terrain will bring two problems to motion planning: how to assess the traversability of the terrain and how to cope with the dynamics model of the robot associated with the terrain. The trajectories generated by existing methods are often too conservative or cannot be tracked well by the controller since the second problem is not well solved. In this paper, we propose terrain pose mapping to describe the impact of terrain on the robot. With this mapping, we can obtain the SE(3) state of the robot on uneven terrain for a given state in SE(2). Then, based on it, we present a trajectory optimization framework for car-like robots on uneven terrain that can consider both of the above problems. The trajectories generated by our method conform to the dynamics model of the system without being overly conservative and yet able to be tracked well by the controller. We perform simulations and real-world experiments to validate the efficiency and trajectory quality of our algorithm.

7.Predicting Routine Object Usage for Proactive Robot Assistance

Authors:Maithili Patel, Aswin Prakash, Sonia Chernova

Abstract: Proactivity in robot assistance refers to the robot's ability to anticipate user needs and perform assistive actions without explicit requests. This requires understanding user routines, predicting consistent activities, and actively seeking information to predict inconsistent behaviors. We propose SLaTe-PRO (Sequential Latent Temporal model for Predicting Routine Object usage), which improves upon prior state-of-the-art by combining object and user action information, and conditioning object usage predictions on past history. Additionally, we find some human behavior to be inherently stochastic and lacking in contextual cues that the robot can use for proactive assistance. To address such cases, we introduce an interactive query mechanism that can be used to ask queries about the user's intended activities and object use to improve prediction. We evaluate our approach on longitudinal data from three households, spanning 24 activity classes. SLaTe-PRO performance raises the F1 score metric to 0.57 without queries, and 0.60 with user queries, over a score of 0.43 from prior work. We additionally present a case study with a fully autonomous household robot.

8.Lighter-Than-Air Autonomous Ball Capture and Scoring Robot -- Design, Development, and Deployment

Authors:Joseph Prince Mathew, Dinesh Karri, James Yang, Kevin Zhu, Yojan Gautam, Kentaro Nojima-Schmunk, Daigo Shishika, Ningshi Yao, Cameron Nowzari

Abstract: This paper describes the full end-to-end design of our primary scoring agent in an aerial autonomous robotics competition from April 2023. As open-ended robotics competitions become more popular, we wish to begin documenting successful team designs and approaches. The intended audience of this paper is not only any future or potential participant in this particular national Defend The Republic (DTR) competition, but rather anyone thinking about designing their first robot or system to be entered in a competition with clear goals. Future DTR participants can and should either build on the ideas here, or find new alternate strategies that can defeat the most successful design last time. For non-DTR participants but students interested in robotics competitions, identifying the minimum viable system needed to be competitive is still important in helping manage time and prioritizing tasks that are crucial to competition success first.

9.Human-Centered Autonomy for Autonomous sUAS Target Searching

Authors:Hunter M. Ray, Zakariya Laouar, Zachary Sunberg, Nisar Ahmed

Abstract: Deploying robots that operate in dynamic, uncertain environments, such as Uncrewed Aerial Systems in search \& rescue missions, require nearly continuous human supervision for vehicle guidance and operation. Without approaches that consider high level mission context, operational methods of autonomous flying necessitate cumbersome manual operation or inefficient exhaustive search patterns. To facilitate more effective use of autonomy, we present a human-centered autonomous system that infers geospatial mission context through dynamic features sets, which then guides a probabilistic target search planner. Operators provide a limited set of diverse inputs, including priority definition, spatial semantic observations over ad-hoc geographical areas, and reference waypoints, which are probabilistically fused with geographical database information and condensed into a discretized value map representing an operator's preferences over an operational area. An online, POMDP-based planner, optimized for target searching, is augmented with this value map to generate an operator-constrained vehicle waypoint guidance plan. We validate the system by gathering input from five first responders trained in search \& rescue and compare simulated system performance against current operational methods for autonomous missions. These results display effective task mental model alignment and more efficient guidance plans, resulting in faster rescue times.

10.LEAP Hand: Low-Cost, Efficient, and Anthropomorphic Hand for Robot Learning

Authors:Kenneth Shaw, Ananye Agarwal, Deepak Pathak

Abstract: Dexterous manipulation has been a long-standing challenge in robotics. While machine learning techniques have shown some promise, results have largely been currently limited to simulation. This can be mostly attributed to the lack of suitable hardware. In this paper, we present LEAP Hand, a low-cost dexterous and anthropomorphic hand for machine learning research. In contrast to previous hands, LEAP Hand has a novel kinematic structure that allows maximal dexterity regardless of finger pose. LEAP Hand is low-cost and can be assembled in 4 hours at a cost of 2000 USD from readily available parts. It is capable of consistently exerting large torques over long durations of time. We show that LEAP Hand can be used to perform several manipulation tasks in the real world -- from visual teleoperation to learning from passive video data and sim2real. LEAP Hand significantly outperforms its closest competitor Allegro Hand in all our experiments while being 1/8th of the cost. We release detailed assembly instructions, the Sim2Real pipeline and a development platform with useful APIs on our website at https://leap-hand.github.io/