arXiv daily

Robotics (cs.RO)

Thu, 03 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Avoidance Navigation Based on Offline Pre-Training Reinforcement Learning

Authors:Yang Wenkai Ji Ruihang Zhang Yuxiang Lei Hao, Zhao Zijie

Abstract: This paper presents a Pre-Training Deep Reinforcement Learning(DRL) for avoidance navigation without map for mobile robots which map raw sensor data to control variable and navigate in an unknown environment. The efficient offline training strategy is proposed to speed up the inefficient random explorations in early stage and we also collect a universal dataset including expert experience for offline training, which is of some significance for other navigation training work. The pre-training and prioritized expert experience are proposed to reduce 80\% training time and has been verified to improve the 2 times reward of DRL. The advanced simulation gazebo with real physical modelling and dynamic equations reduce the gap between sim-to-real. We train our model a corridor environment, and evaluate the model in different environment getting the same effect. Compared to traditional method navigation, we can confirm the trained model can be directly applied into different scenarios and have the ability to no collision navigate. It was demonstrated that our DRL model have universal general capacity in different environment.

2.Uncertainty analysis for accurate ground truth trajectories with robotic total stations

Authors:Maxime Vaidis, William Dubois, Effie Daum, Damien LaRocque, François Pomerleau

Abstract: In the context of robotics, accurate ground truth positioning is essential for the development of Simultaneous Localization and Mapping (SLAM) and control algorithms. Robotic Total Stations (RTSs) provide accurate and precise reference positions in different types of outdoor environments, especially when compared to the limited accuracy of Global Navigation Satellite System (GNSS) in cluttered areas. Three RTSs give the possibility to obtain the six-Degrees Of Freedom (DOF) reference pose of a robotic platform. However, the uncertainty of every pose is rarely computed for trajectory evaluation. As evaluation algorithms are getting increasingly precise, it becomes crucial to take into account this uncertainty. We propose a method to compute this six-DOF uncertainty from the fusion of three RTSs based on Monte Carlo (MC) methods. This solution relies on point-to-point minimization to propagate the noise of RTSs on the pose of the robotic platform. Five main noise sources are identified to model this uncertainty: noise inherent to the instrument, tilt noise, atmospheric factors, time synchronization noise, and extrinsic calibration noise. Based on extensive experimental work, we compare the impact of each noise source on the prism uncertainty and the final estimated pose. Tested on more than 50 km of trajectories, our comparison highlighted the importance of the calibration noise and the measurement distance, which should be ideally under 75 m. Moreover, it has been noted that the uncertainty on the pose of the robot is not prominently affected by one particular noise source, compared to the others.

3.Mani-GPT: A Generative Model for Interactive Robotic Manipulation

Authors:Zhe Zhang, Wei Chaid, Jiankun Wang

Abstract: In real-world scenarios, human dialogues are multi-round and diverse. Furthermore, human instructions can be unclear and human responses are unrestricted. Interactive robots face difficulties in understanding human intents and generating suitable strategies for assisting individuals through manipulation. In this article, we propose Mani-GPT, a Generative Pre-trained Transformer (GPT) for interactive robotic manipulation. The proposed model has the ability to understand the environment through object information, understand human intent through dialogues, generate natural language responses to human input, and generate appropriate manipulation plans to assist the human. This makes the human-robot interaction more natural and humanized. In our experiment, Mani-GPT outperforms existing algorithms with an accuracy of 84.6% in intent recognition and decision-making for actions. Furthermore, it demonstrates satisfying performance in real-world dialogue tests with users, achieving an average response accuracy of 70%.

4.Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models

Authors:Joao Carvalho, An T. Le, Mark Baierl, Dorothea Koert, Jan Peters

Abstract: Learning priors on trajectory distributions can help accelerate robot motion planning optimization. Given previously successful plans, learning trajectory generative models as priors for a new planning problem is highly desirable. Prior works propose several ways on utilizing this prior to bootstrapping the motion planning problem. Either sampling the prior for initializations or using the prior distribution in a maximum-a-posterior formulation for trajectory optimization. In this work, we propose learning diffusion models as priors. We then can sample directly from the posterior trajectory distribution conditioned on task goals, by leveraging the inverse denoising process of diffusion models. Furthermore, diffusion has been recently shown to effectively encode data multimodality in high-dimensional settings, which is particularly well-suited for large trajectory dataset. To demonstrate our method efficacy, we compare our proposed method - Motion Planning Diffusion - against several baselines in simulated planar robot and 7-dof robot arm manipulator environments. To assess the generalization capabilities of our method, we test it in environments with previously unseen obstacles. Our experiments show that diffusion models are strong priors to encode high-dimensional trajectory distributions of robot motions.

5.Active Acoustic Sensing for Robot Manipulation

Authors:Shihan Lu, Heather Culbertson

Abstract: Perception in robot manipulation has been actively explored with the goal of advancing and integrating vision and touch for global and local feature extraction. However, it is difficult to perceive certain object internal states, and the integration of visual and haptic perception is not compact and is easily biased. We propose to address these limitations by developing an active acoustic sensing method for robot manipulation. Active acoustic sensing relies on the resonant properties of the object, which are related to its material, shape, internal structure, and contact interactions with the gripper and environment. The sensor consists of a vibration actuator paired with a piezo-electric microphone. The actuator generates a waveform, and the microphone tracks the waveform's propagation and distortion as it travels through the object. This paper presents the sensing principles, hardware design, simulation development, and evaluation of physical and simulated sensory data under different conditions as a proof-of-concept. This work aims to provide fundamentals on a useful tool for downstream robot manipulation tasks using active acoustic sensing, such as object recognition, grasping point estimation, object pose estimation, and external contact formation detection.

6.Improving Wind Resistance Performance of Cascaded PID Controlled Quadcopters using Residual Reinforcement Learning

Authors:Yu Ishihara, Yuichi Hazama, Kousuke Suzuki, Jerry Jun Yokono, Kohtaro Sabe, Kenta Kawamoto

Abstract: Wind resistance control is an essential feature for quadcopters to maintain their position to avoid deviation from target position and prevent collisions with obstacles. Conventionally, cascaded PID controller is used for the control of quadcopters for its simplicity and ease of tuning its parameters. However, it is weak against wind disturbances and the quadcopter can easily deviate from target position. In this work, we propose a residual reinforcement learning based approach to build a wind resistance controller of a quadcopter. By learning only the residual that compensates the disturbance, we can continue using the cascaded PID controller as the base controller of the quadcopter but improve its performance against wind disturbances. To avoid unexpected crashes and destructions of quadcopters, our method does not require real hardware for data collection and training. The controller is trained only on a simulator and directly applied to the target hardware without extra finetuning process. We demonstrate the effectiveness of our approach through various experiments including an experiment in an outdoor scene with wind speed greater than 13 m/s. Despite its simplicity, our controller reduces the position deviation by approximately 50% compared to the quadcopter controlled with the conventional cascaded PID controller. Furthermore, trained controller is robust and preserves its performance even though the quadcopter's mass and propeller's lift coefficient is changed between 50% to 150% from original training time.

7.Towards a Safe Real-Time Motion Planning Framework for Autonomous Driving Systems: An MPPI Approach

Authors:Mehdi Testouri, Gamal Elghazaly, Raphael Frank

Abstract: Planning safe trajectories in Autonomous Driving Systems (ADS) is a complex problem to solve in real-time. The main challenge to solve this problem arises from the various conditions and constraints imposed by road geometry, semantics and traffic rules, as well as the presence of dynamic agents. Recently, Model Predictive Path Integral (MPPI) has shown to be an effective framework for optimal motion planning and control in robot navigation in unstructured and highly uncertain environments. In this paper, we formulate the motion planning problem in ADS as a nonlinear stochastic dynamic optimization problem that can be solved using an MPPI strategy. The main technical contribution of this work is a method to handle obstacles within the MPPI formulation safely. In this method, obstacles are approximated by circles that can be easily integrated into the MPPI cost formulation while considering safety margins. The proposed MPPI framework has been efficiently implemented in our autonomous vehicle and experimentally validated using three different primitive scenarios. Experimental results show that generated trajectories are safe, feasible and perfectly achieve the planning objective. The video results as well as the open-source implementation are available at: https://gitlab.uni.lu/360lab-public/mppi

8.Modelling and simulation of a commercially available dielectric elastomer actuator

Authors:Lukas Sohlbach, Hamza Hobbani, Chistopher Blase, Fernando Perez-Peña, Karsten Schmidt

Abstract: In order to fully harness the potential of dielectric elastomer actu-ators (DEAs) in soft robots, advanced control methods are need-ed. An important groundwork for this is the development of a control-oriented model that can adequately describe the underly-ing dynamics of a DEA. A common feature of existing models is that always custom-made DEAs were investigated. This makes the modelling process easier, as all specifications and the struc-ture of the actuator are well known. In the case of a commercial actuator, however, only the information from the manufacturer is available and must be checked or completed during the modelling process. The aim of this paper is to explore how a commercial stacked silicone-based DEA can be modelled and how complex the model should be to properly replicate the features of the actu-ator. The static description has demonstrated the suitability of Hooke's law. In the case of dynamic description, it is shown that no viscoelastic model is needed for control-oriented modelling. However, if all features of the DEA are considered, the general-ized Kelvin-Maxwell model with three Maxwell elements shows good results, stability and computational efficiency.

9.Joint Out-of-Distribution Detection and Uncertainty Estimation for Trajectory Predictio

Authors:Julian Wiederer, Julian Schmidt, Ulrich Kressel, Klaus Dietmayer, Vasileios Belagiannis

Abstract: Despite the significant research efforts on trajectory prediction for automated driving, limited work exists on assessing the prediction reliability. To address this limitation we propose an approach that covers two sources of error, namely novel situations with out-of-distribution (OOD) detection and the complexity in in-distribution (ID) situations with uncertainty estimation. We introduce two modules next to an encoder-decoder network for trajectory prediction. Firstly, a Gaussian mixture model learns the probability density function of the ID encoder features during training, and then it is used to detect the OOD samples in regions of the feature space with low likelihood. Secondly, an error regression network is applied to the encoder, which learns to estimate the trajectory prediction error in supervised training. During inference, the estimated prediction error is used as the uncertainty. In our experiments, the combination of both modules outperforms the prior work in OOD detection and uncertainty estimation, on the Shifts robust trajectory prediction dataset by $2.8 \%$ and $10.1 \%$, respectively. The code is publicly available.

10.NeuroSwarm: Multi-Agent Neural 3D Scene Reconstruction and Segmentation with UAV for Optimal Navigation of Quadruped Robot

Authors:Iana Zhura, Denis Davletshin, Nipun Dhananjaya Weerakkodi Mudalige, Aleksey Fedoseev, Robinroy Peter, Dzmitry Tsetserukou

Abstract: Quadruped robots have the distinct ability to adapt their body and step height to navigate through cluttered environments. Nonetheless, for these robots to utilize their full potential in real-world scenarios, they require awareness of their environment and obstacle geometry. We propose a novel multi-agent robotic system that incorporates cutting-edge technologies. The proposed solution features a 3D neural reconstruction algorithm that enables navigation of a quadruped robot in both static and semi-static environments. The prior areas of the environment are also segmented according to the quadruped robots' abilities to pass them. Moreover, we have developed an adaptive neural field optimal motion planner (ANFOMP) that considers both collision probability and obstacle height in 2D space.Our new navigation and mapping approach enables quadruped robots to adjust their height and behavior to navigate under arches and push through obstacles with smaller dimensions. The multi-agent mapping operation has proven to be highly accurate, with an obstacle reconstruction precision of 82%. Moreover, the quadruped robot can navigate with 3D obstacle information and the ANFOMP system, resulting in a 33.3% reduction in path length and a 70% reduction in navigation time.

11.A Compliant Robotic Leg Based on Fibre Jamming

Authors:Lois Liow, James Brett, Josh Pinskier, Lauren Hanson, Louis Tidswell, Navinda Kottege, David Howard

Abstract: Humans possess a remarkable ability to react to sudden and unpredictable perturbations through immediate mechanical responses, which harness the visco-elastic properties of muscles to perform auto-corrective movements to maintain balance. In this paper, we propose a novel design of a robotic leg inspired by this mechanism. We develop multi-material fibre jammed tendons, and demonstrate their use as passive compliant mechanisms to achieve variable joint stiffness and improve stability. Through numerical simulations and extensive experimentation, we demonstrate the ability for our system to achieve a wide range of potentially beneficial compliance regimes. We show the role and contribution of each tendon quantitatively by evaluating their individual force contribution in resisting rotational perturbations. We also perform walking experiments with programmed bioinspired gaits that varying the stiffness of the tendons throughout the gait cycle, demonstrating a stable and consistent behaviour. We show the potential of such systems when integrated into legged robots, where compliance and shock absorption can be provided entirely through the morphological properties of the leg.

12.Not All Actions Are Created Equal: Bayesian Optimal Experimental Design for Safe and Optimal Nonlinear System Identification

Authors:Parker Ewen, Gitesh Gunjal, Joey Wilson, Jinsun Liu, Challen Enninful Adu, Ram Vasudevan

Abstract: Uncertainty in state or model parameters is common in robotics and typically handled by acquiring system measurements that yield information about the uncertain quantities of interest. Inputs to a nonlinear dynamical system yield outcomes that produce varying amounts of information about the underlying uncertain parameters of the system. To maximize information gained with respect to these uncertain parameters we present a Bayesian approach to data collection for system identification called Bayesian Optimal Experimental Design (BOED). The formulation uses parameterized trajectories and cubature to compute maximally informative system trajectories which obtain as much information as possible about unknown system parameters while also ensuring safety under mild assumptions. The proposed method is applicable to non-linear and non-Gaussian systems and is applied to a high-fidelity vehicle model from the literature. It is shown the proposed approach requires orders of magnitude fewer samples compared to state-of-the-art BOED algorithms from the literature while simultaneously providing safety guarantees.

13.Sim-to-Real Vision-depth Fusion CNNs for Robust Pose Estimation Aboard Autonomous Nano-quadcopter

Authors:Luca Crupi, Elia Cereda, Alessandro Giusti, Daniele Palossi

Abstract: Nano-quadcopters are versatile platforms attracting the interest of both academia and industry. Their tiny form factor, i.e., $\,$10 cm diameter, makes them particularly useful in narrow scenarios and harmless in human proximity. However, these advantages come at the price of ultra-constrained onboard computational and sensorial resources for autonomous operations. This work addresses the task of estimating human pose aboard nano-drones by fusing depth and images in a novel CNN exclusively trained in simulation yet capable of robust predictions in the real world. We extend a commercial off-the-shelf (COTS) Crazyflie nano-drone -- equipped with a 320$\times$240 px camera and an ultra-low-power System-on-Chip -- with a novel multi-zone (8$\times$8) depth sensor. We design and compare different deep-learning models that fuse depth and image inputs. Our models are trained exclusively on simulated data for both inputs, and transfer well to the real world: field testing shows an improvement of 58% and 51% of our depth+camera system w.r.t. a camera-only State-of-the-Art baseline on the horizontal and angular mean pose errors, respectively. Our prototype is based on COTS components, which facilitates reproducibility and adoption of this novel class of systems.