arXiv daily

Robotics (cs.RO)

Mon, 28 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.End-to-End Driving via Self-Supervised Imitation Learning Using Camera and LiDAR Data

Authors:Jin Bok Park, Jinkyu Lee, Muhyun Back, Hyunmin Han, David T. Ma, Sang Min Won, Sung Soo Hwang, Il Yong Chun

Abstract: In autonomous driving, the end-to-end (E2E) driving approach that predicts vehicle control signals directly from sensor data is rapidly gaining attention. To learn a safe E2E driving system, one needs an extensive amount of driving data and human intervention. Vehicle control data is constructed by many hours of human driving, and it is challenging to construct large vehicle control datasets. Often, publicly available driving datasets are collected with limited driving scenes, and collecting vehicle control data is only available by vehicle manufacturers. To address these challenges, this paper proposes the first self-supervised learning framework, self-supervised imitation learning (SSIL), that can learn E2E driving networks without using driving command data. To construct pseudo steering angle data, proposed SSIL predicts a pseudo target from the vehicle's poses at the current and previous time points that are estimated with light detection and ranging sensors. Our numerical experiments demonstrate that the proposed SSIL framework achieves comparable E2E driving accuracy with the supervised learning counterpart. In addition, our qualitative analyses using a conventional visual explanation tool show that trained NNs by proposed SSIL and the supervision counterpart attend similar objects in making predictions.

2.Geometric Mechanics of Simultaneous Nonslip Contact in a Planar Quadruped

Authors:Hari Krishna Hari Prasad, Kaushik Jayaram

Abstract: In this paper, we develop a geometric framework for generating non-slip quadrupedal two-beat gaits. We consider a four-bar mechanism as a surrogate model for a contact state and develop the geometric tools such as shape-change basis to aid in gait generation, local connection as the matrix-equation of motion, and stratified panels to model net locomotion in line with previous work\cite{prasad2023contactswitch}. Standard two-beat gaits in quadrupedal systems like trot divide the shape space into two equal, decoupled subspaces. The subgaits generated in each subspace space are designed independently and when combined with appropriate phasing generate a two-beat gait where the displacements add up due to the geometric nature of the system. By adding ``scaling" and ``sliding" control knobs to subgaits defined as flows over the shape-change basis, we continuously steer an arbitrary, planar quadrupedal system. This exhibits translational anisotropy when modulated using the scaling inputs. To characterize the steering induced by sliding inputs, we define an average path curvature function analytically and show that the steering gaits can be generated using a geometric nonslip contact modeling framework.

3.Data-Efficient Online Learning of Ball Placement in Robot Table Tennis

Authors:Philip Tobuschat, Hao Ma, Dieter Büchler, Bernhard Schölkopf, Michael Muehlebach

Abstract: We present an implementation of an online optimization algorithm for hitting a predefined target when returning ping-pong balls with a table tennis robot. The online algorithm optimizes over so-called interception policies, which define the manner in which the robot arm intercepts the ball. In our case, these are composed of the state of the robot arm (position and velocity) at interception time. Gradient information is provided to the optimization algorithm via the mapping from the interception policy to the landing point of the ball on the table, which is approximated with a black-box and a grey-box approach. Our algorithm is applied to a robotic arm with four degrees of freedom that is driven by pneumatic artificial muscles. As a result, the robot arm is able to return the ball onto any predefined target on the table after about 2-5 iterations. We highlight the robustness of our approach by showing rapid convergence with both the black-box and the grey-box gradients. In addition, the small number of iterations required to reach close proximity to the target also underlines the sample efficiency. A demonstration video can be found here: https://youtu.be/VC3KJoCss0k.

4.Quantitative Data Analysis: CRASAR Small Unmanned Aerial Systems at Hurricane Ian

Authors:Thomas Manzini, Robin Murphy, David Merrick

Abstract: This paper provides a summary of the 281 sorties that were flown by the 10 different models of small unmanned aerial systems (sUAS) at Hurricane Ian, and the failures made in the field. These 281 sorties, supporting 44 missions, represents the largest use of sUAS in a disaster to date (previously Hurricane Florence with 260 sorties). The sUAS operations at Hurricane Ian differ slightly from prior operations as they included the first documented uses of drones performing interior search for victims, and the first use of a VTOL fixed wing aircraft during a large scale disaster. However, there are substantive similarities to prior drone operations. Most notably, rotorcraft continue to perform the vast majority of flights, wireless data transmission capacity continues to be a limitation, and the lack of centralized control for unmanned and manned aerial systems continues to cause operational friction. This work continues by documenting the failures, both human and technological made in the field and concludes with a discussion summarizing potential areas for further work to improve sUAS response to large scale disasters.

5.Towards Standardized Disturbance Rejection Testing of Legged Robot Locomotion with Linear Impactor: A Preliminary Study, Observations, and Implications

Authors:Bowen Weng, Guillermo A. Castillo, Yun-Seok Kang, Ayonga Hereid

Abstract: Dynamic locomotion in legged robots is close to industrial collaboration, but a lack of standardized testing obstructs commercialization. The issues are not merely political, theoretical, or algorithmic but also physical, indicating limited studies and comprehension regarding standard testing infrastructure and equipment. For decades, the approaches we have been testing legged robots were rarely standardizable with hand-pushing, foot-kicking, rope-dragging, stick-poking, and ball-swinging. This paper aims to bridge the gap by proposing the use of the linear impactor, a well-established tool in other standardized testing disciplines, to serve as an adaptive, repeatable, and fair disturbance rejection testing equipment for legged robots. A pneumatic linear impactor is also adopted for the case study involving the humanoid robot Digit. Three locomotion controllers are examined, including a commercial one, using a walking-in-place task against frontal impacts. The statistically best controller was able to withstand the impact momentum (26.376 kg$\cdot$m/s) on par with a reported average effective momentum from straight punches by Olympic boxers (26.506 kg$\cdot$m/s). Moreover, the case study highlights other anti-intuitive observations, demonstrations, and implications that, to the best of the authors' knowledge, are first-of-its-kind revealed in real-world testing of legged robots.

6.Human Comfortability Index Estimation in Industrial Human-Robot Collaboration Task

Authors:Celal Savur, Jamison Heard, Ferat Sahin

Abstract: Fluent human-robot collaboration requires a robot teammate to understand, learn, and adapt to the human's psycho-physiological state. Such collaborations require a computing system that monitors human physiological signals during human-robot collaboration (HRC) to quantitatively estimate a human's level of comfort, which we have termed in this research as comfortability index (CI) and uncomfortability index (unCI). Subjective metrics (surprise, anxiety, boredom, calmness, and comfortability) and physiological signals were collected during a human-robot collaboration experiment that varied robot behavior. The emotion circumplex model is adapted to calculate the CI from the participant's quantitative data as well as physiological data. To estimate CI/unCI from physiological signals, time features were extracted from electrocardiogram (ECG), galvanic skin response (GSR), and pupillometry signals. In this research, we successfully adapt the circumplex model to find the location (axis) of 'comfortability' and 'uncomfortability' on the circumplex model, and its location match with the closest emotions on the circumplex model. Finally, the study showed that the proposed approach can estimate human comfortability/uncomfortability from physiological signals.

7.Active Pose Refinement for Textureless Shiny Objects using the Structured Light Camera

Authors:Jun Yang, Jian Yao, Steven L. Waslander

Abstract: 6D pose estimation of textureless shiny objects has become an essential problem in many robotic applications. Many pose estimators require high-quality depth data, often measured by structured light cameras. However, when objects have shiny surfaces (e.g., metal parts), these cameras fail to sense complete depths from a single viewpoint due to the specular reflection, resulting in a significant drop in the final pose accuracy. To mitigate this issue, we present a complete active vision framework for 6D object pose refinement and next-best-view prediction. Specifically, we first develop an optimization-based pose refinement module for the structured light camera. Our system then selects the next best camera viewpoint to collect depth measurements by minimizing the predicted uncertainty of the object pose. Compared to previous approaches, we additionally predict measurement uncertainties of future viewpoints by online rendering, which significantly improves the next-best-view prediction performance. We test our approach on the challenging real-world ROBI dataset. The results demonstrate that our pose refinement method outperforms the traditional ICP-based approach when given the same input depth data, and our next-best-view strategy can achieve high object pose accuracy with significantly fewer viewpoints than the heuristic-based policies.

8.Symmetric Models for Visual Force Policy Learning

Authors:Colin Kohler, Anuj Shrivatsav Srikanth, Eshan Arora, Robert Platt

Abstract: While it is generally acknowledged that force feedback is beneficial to robotic control, applications of policy learning to robotic manipulation typically only leverage visual feedback. Recently, symmetric neural models have been used to significantly improve the sample efficiency and performance of policy learning across a variety of robotic manipulation domains. This paper explores an application of symmetric policy learning to visual-force problems. We present Symmetric Visual Force Learning (SVFL), a novel method for robotic control which leverages visual and force feedback. We demonstrate that SVFL can significantly outperform state of the art baselines for visual force learning and report several interesting empirical findings related to the utility of learning force feedback control policies in both general manipulation tasks and scenarios with low visual acuity.