arXiv daily

Robotics (cs.RO)

Wed, 02 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Reward Shaping for Building Trustworthy Robots in Sequential Human-Robot Interaction

Authors:Yaohui Guo, X. Jessie Yang, Cong Shi

Abstract: Trust-aware human-robot interaction (HRI) has received increasing research attention, as trust has been shown to be a crucial factor for effective HRI. Research in trust-aware HRI discovered a dilemma -- maximizing task rewards often leads to decreased human trust, while maximizing human trust would compromise task performance. In this work, we address this dilemma by formulating the HRI process as a two-player Markov game and utilizing the reward-shaping technique to improve human trust while limiting performance loss. Specifically, we show that when the shaping reward is potential-based, the performance loss can be bounded by the potential functions evaluated at the final states of the Markov game. We apply the proposed framework to the experience-based trust model, resulting in a linear program that can be efficiently solved and deployed in real-world applications. We evaluate the proposed framework in a simulation scenario where a human-robot team performs a search-and-rescue mission. The results demonstrate that the proposed framework successfully modifies the robot's optimal policy, enabling it to increase human trust at a minimal task performance cost.

2.Height Change Feature Based Free Space Detection

Authors:Steven Schreck, Hannes Reichert, Manuel Hetzel, Konrad Doll, Bernhard Sick

Abstract: In the context of autonomous forklifts, ensuring non-collision during travel, pick, and place operations is crucial. To accomplish this, the forklift must be able to detect and locate areas of free space and potential obstacles in its environment. However, this is particularly challenging in highly dynamic environments, such as factory sites and production halls, due to numerous industrial trucks and workers moving throughout the area. In this paper, we present a novel method for free space detection, which consists of the following steps. We introduce a novel technique for surface normal estimation relying on spherical projected LiDAR data. Subsequently, we employ the estimated surface normals to detect free space. The presented method is a heuristic approach that does not require labeling and can ensure real-time application due to high processing speed. The effectiveness of the proposed method is demonstrated through its application to a real-world dataset obtained on a factory site both indoors and outdoors, and its evaluation on the Semantic KITTI dataset [2]. We achieved a mean Intersection over Union (mIoU) score of 50.90 % on the benchmark dataset, with a processing speed of 105 Hz. In addition, we evaluated our approach on our factory site dataset. Our method achieved a mIoU score of 63.30 % at 54 Hz

3.Grasp Stability Assessment Through Attention-Guided Cross-Modality Fusion and Transfer Learning

Authors:Zhuangzhuang Zhang, Zhenning Zhou, Haili Wang, Zhinan Zhang, Huang Huang, Qixin Cao

Abstract: Extensive research has been conducted on assessing grasp stability, a crucial prerequisite for achieving optimal grasping strategies, including the minimum force grasping policy. However, existing works employ basic feature-level fusion techniques to combine visual and tactile modalities, resulting in the inadequate utilization of complementary information and the inability to model interactions between unimodal features. This work proposes an attention-guided cross-modality fusion architecture to comprehensively integrate visual and tactile features. This model mainly comprises convolutional neural networks (CNNs), self-attention, and cross-attention mechanisms. In addition, most existing methods collect datasets from real-world systems, which is time-consuming and high-cost, and the datasets collected are comparatively limited in size. This work establishes a robotic grasping system through physics simulation to collect a multimodal dataset. To address the sim-to-real transfer gap, we propose a migration strategy encompassing domain randomization and domain adaptation techniques. The experimental results demonstrate that the proposed fusion framework achieves markedly enhanced prediction performance (approximately 10%) compared to other baselines. Moreover, our findings suggest that the trained model can be reliably transferred to real robotic systems, indicating its potential to address real-world challenges.

4.Push to know! -- Visuo-Tactile based Active Object Parameter Inference with Dual Differentiable Filtering

Authors:Anirvan Dutta, Etienne Burdet, Mohsen Kaboli

Abstract: For robotic systems to interact with objects in dynamic environments, it is essential to perceive the physical properties of the objects such as shape, friction coefficient, mass, center of mass, and inertia. This not only eases selecting manipulation action but also ensures the task is performed as desired. However, estimating the physical properties of especially novel objects is a challenging problem, using either vision or tactile sensing. In this work, we propose a novel framework to estimate key object parameters using non-prehensile manipulation using vision and tactile sensing. Our proposed active dual differentiable filtering (ADDF) approach as part of our framework learns the object-robot interaction during non-prehensile object push to infer the object's parameters. Our proposed method enables the robotic system to employ vision and tactile information to interactively explore a novel object via non-prehensile object push. The novel proposed N-step active formulation within the differentiable filtering facilitates efficient learning of the object-robot interaction model and during inference by selecting the next best exploratory push actions (where to push? and how to push?). We extensively evaluated our framework in simulation and real-robotic scenarios, yielding superior performance to the state-of-the-art baseline.

5.Ethical Decision-making for Autonomous Driving based on LSTM Trajectory Prediction Network

Authors:Wen Wei, Jiankun Wang

Abstract: The development of autonomous vehicles has brought a great impact and changes to the transportation industry, offering numerous benefits in terms of safety and efficiency. However, one of the key challenges that autonomous driving faces is how to make ethical decisions in complex situations. To address this issue, in this article, a novel trajectory prediction method is proposed to achieve ethical decision-making for autonomous driving. Ethical considerations are integrated into the decision-making process of autonomous vehicles by quantifying the utility principle and incorporating them into mathematical formulas. Furthermore, trajectory prediction is optimized using LSTM network with an attention module, resulting in improved accuracy and reliability in trajectory planning and selection. Through extensive simulation experiments, we demonstrate the effectiveness of the proposed method in making ethical decisions and selecting optimal trajectories.

6.A Counterfactual Safety Margin Perspective on the Scoring of Autonomous Vehicles' Riskiness

Authors:Alessandro Zanardi, Andrea Censi, Margherita Atzei, Luigi Di Lillo, Emilio Frazzoli

Abstract: Autonomous Vehicles (AVs) have the potential to provide numerous societal benefits, such as decreased road accidents and increased overall transportation efficiency. However, quantifying the risk associated with AVs is challenging due to the lack of historical data and the rapidly evolving technology. This paper presents a data-driven framework for comparing the risk of different AVs' behaviors in various operational design domains (ODDs), based on counterfactual simulations of "misbehaving" road users. We introduce the concept of counterfactual safety margin, which represents the minimum deviation from normal behavior that could lead to a collision. This concept helps to find the most critical scenarios but also to assess the frequency and severity of risk of AVs. We show that the proposed methodology is applicable even when the AV's behavioral policy is unknown -- through worst- and best-case analyses -- making the method useful also to external third-party risk assessors. Our experimental results demonstrate the correlation between the safety margin, the driving policy quality, and the ODD shedding light on the relative risk associated with different AV providers. This work contributes to AV safety assessment and aids in addressing legislative and insurance concerns surrounding this emerging technology.

7.Spatial Intelligence of a Self-driving Car and Rule-Based Decision Making

Authors:Stanislav Kikot

Abstract: In this paper we show how rule-based decision making can be combined with traditional motion planning techniques to achieve human-like behavior of a self-driving vehicle in complex traffic situations. We give and discuss examples of decision rules in autonomous driving. We draw on these examples to illustrate that developing techniques for spatial awareness of robots is an exciting activity which deserves more attention from spatial reasoning community that it had received so far.

8.Optimization-Based Motion Planning for Autonomous Agricultural Vehicles Turning in Constrained Headlands

Authors:Chen Peng, Peng Wei, Zhenghao Fei, Yuankai Zhu, Stavros G. Vougioukas

Abstract: Headland maneuvering is a crucial aspect of unmanned field operations for autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial auto-guidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles,rendering the task of planning a smooth and collision-free turning trajectory difficult. To address this challenge, we propose an optimization-based motion planning algorithm for headland turning under geometrical constraints imposed by field geometry and obstacles.

9.Virtual Reality Based Robot Teleoperation via Human-Scene Interaction

Authors:Lingxiao Meng, Jiangshan Liu, Wei Chai, Jiankun Wang, Max Q. -H. Meng

Abstract: Robot teleoperation gains great success in various situations, including chemical pollution rescue, disaster relief, and long-distance manipulation. In this article, we propose a virtual reality (VR) based robot teleoperation system to achieve more efficient and natural interaction with humans in different scenes. A user-friendly VR interface is designed to help users interact with a desktop scene using their hands efficiently and intuitively. To improve user experience and reduce workload, we simulate the process in the physics engine to help build a preview of the scene after manipulation in the virtual scene before execution. We conduct experiments with different users and compare our system with a direct control method across several teleoperation tasks. The user study demonstrates that the proposed system enables users to perform operations more instinctively with a lighter mental workload. Users can perform pick-and-place and object-stacking tasks in a considerably short time, even for beginners. Our code is available at https://github.com/lingxiaomeng/VR_Teleoperation_Gen3.