
Machine Learning (stat.ML)
Fri, 05 May 2023
1.Demystifying Softmax Gating in Gaussian Mixture of Experts
Authors:Huy Nguyen, TrungTin Nguyen, Nhat Ho
Abstract: Understanding parameter estimation of softmax gating Gaussian mixture of experts has remained a long-standing open problem in the literature. It is mainly due to three fundamental theoretical challenges associated with the softmax gating: (i) the identifiability only up to the translation of the parameters; (ii) the intrinsic interaction via partial differential equation between the softmax gating and the expert functions in Gaussian distribution; (iii) the complex dependence between the numerator and denominator of the conditional density of softmax gating Gaussian mixture of experts. We resolve these challenges by proposing novel Vononoi loss functions among parameters and establishing the convergence rates of the maximum likelihood estimator (MLE) for solving parameter estimation in these models. When the number of experts is unknown and over-specified, our findings show a connection between the rate of MLE and a solvability problem of a system of polynomial equations.
2.Decentralized diffusion-based learning under non-parametric limited prior knowledge
Authors:Paweł Wachel, Krzysztof Kowalczyk, Cristian R. Rojas
Abstract: We study the problem of diffusion-based network learning of a nonlinear phenomenon, $m$, from local agents' measurements collected in a noisy environment. For a decentralized network and information spreading merely between directly neighboring nodes, we propose a non-parametric learning algorithm, that avoids raw data exchange and requires only mild \textit{a priori} knowledge about $m$. Non-asymptotic estimation error bounds are derived for the proposed method. Its potential applications are illustrated through simulation experiments.
3.Sparsifying Bayesian neural networks with latent binary variables and normalizing flows
Authors:Lars Skaaret-Lund, Geir Storvik, Aliaksandr Hubin
Abstract: Artificial neural networks (ANNs) are powerful machine learning methods used in many modern applications such as facial recognition, machine translation, and cancer diagnostics. A common issue with ANNs is that they usually have millions or billions of trainable parameters, and therefore tend to overfit to the training data. This is especially problematic in applications where it is important to have reliable uncertainty estimates. Bayesian neural networks (BNN) can improve on this, since they incorporate parameter uncertainty. In addition, latent binary Bayesian neural networks (LBBNN) also take into account structural uncertainty by allowing the weights to be turned on or off, enabling inference in the joint space of weights and structures. In this paper, we will consider two extensions to the LBBNN method: Firstly, by using the local reparametrization trick (LRT) to sample the hidden units directly, we get a more computationally efficient algorithm. More importantly, by using normalizing flows on the variational posterior distribution of the LBBNN parameters, the network learns a more flexible variational posterior distribution than the mean field Gaussian. Experimental results show that this improves predictive power compared to the LBBNN method, while also obtaining more sparse networks. We perform two simulation studies. In the first study, we consider variable selection in a logistic regression setting, where the more flexible variational distribution leads to improved results. In the second study, we compare predictive uncertainty based on data generated from two-dimensional Gaussian distributions. Here, we argue that our Bayesian methods lead to more realistic estimates of predictive uncertainty.
4.Random Smoothing Regularization in Kernel Gradient Descent Learning
Authors:Liang Ding, Tianyang Hu, Jiahang Jiang, Donghao Li, Wenjia Wang, Yuan Yao
Abstract: Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.
5.The geometry of financial institutions -- Wasserstein clustering of financial data
Authors:Lorenz Riess, Mathias Beiglböck, Johannes Temme, Andreas Wolf, Julio Backhoff
Abstract: The increasing availability of granular and big data on various objects of interest has made it necessary to develop methods for condensing this information into a representative and intelligible map. Financial regulation is a field that exemplifies this need, as regulators require diverse and often highly granular data from financial institutions to monitor and assess their activities. However, processing and analyzing such data can be a daunting task, especially given the challenges of dealing with missing values and identifying clusters based on specific features. To address these challenges, we propose a variant of Lloyd's algorithm that applies to probability distributions and uses generalized Wasserstein barycenters to construct a metric space which represents given data on various objects in condensed form. By applying our method to the financial regulation context, we demonstrate its usefulness in dealing with the specific challenges faced by regulators in this domain. We believe that our approach can also be applied more generally to other fields where large and complex data sets need to be represented in concise form.
6.Differentially Private Topological Data Analysis
Authors:Taegyu Kang, Sehwan Kim, Jinwon Sohn, Jordan Awan
Abstract: This paper is the first to attempt differentially private (DP) topological data analysis (TDA), producing near-optimal private persistence diagrams. We analyze the sensitivity of persistence diagrams in terms of the bottleneck distance, and we show that the commonly used \v{C}ech complex has sensitivity that does not decrease as the sample size $n$ increases. This makes it challenging for the persistence diagrams of \v{C}ech complexes to be privatized. As an alternative, we show that the persistence diagram obtained by the $L^1$-distance to measure (DTM) has sensitivity $O(1/n)$. Based on the sensitivity analysis, we propose using the exponential mechanism whose utility function is defined in terms of the bottleneck distance of the $L^1$-DTM persistence diagrams. We also derive upper and lower bounds of the accuracy of our privacy mechanism; the obtained bounds indicate that the privacy error of our mechanism is near-optimal. We demonstrate the performance of our privatized persistence diagrams through simulations as well as on a real dataset tracking human movement.