arXiv daily

Machine Learning (stat.ML)

Tue, 08 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Generative Models for Anomaly Detection and Design-Space Dimensionality Reduction in Shape Optimization

Authors:Danny D'Agostino

Abstract: Our work presents a novel approach to shape optimization, that has the twofold objective to improve the efficiency of global optimization algorithms while promoting the generation of high-quality designs during the optimization process free of geometrical anomalies. This is accomplished by reducing the number of the original design variables defining a new reduced subspace where the geometrical variance is maximized and modeling the underlying generative process of the data via probabilistic linear latent variable models such as Factor Analysis and Probabilistic Principal Component Analysis. We show that the data follows approximately a Gaussian distribution when the shape modification method is linear and the design variables are sampled uniformly at random, due to the direct application of the central limit theorem. The model uncertainty is measured in terms of Mahalanobis distance, and the paper demonstrates that anomalous designs tend to exhibit a high value of this metric. This enables the definition of a new optimization model where anomalous geometries are penalized and consequently avoided during the optimization loop. The procedure is demonstrated for hull shape optimization of the DTMB 5415 model, extensively used as an international benchmark for shape optimization problems. The global optimization routine is carried out using Bayesian Optimization and the DIRECT algorithm. From the numerical results, the new framework improves the convergence of global optimization algorithms, while only designs with high-quality geometrical features are generated through the optimization routine thereby avoiding the wastage of precious computationally expensive simulations.

2.Toward Improving Predictive Risk Modelling for New Zealand's Child Welfare System Using Clustering Methods

Authors:Sahar Barmomanesh, Victor Miranda-Soberanis

Abstract: The combination of clinical judgement and predictive risk models crucially assist social workers to segregate children at risk of maltreatment and decide when authorities should intervene. Predictive risk modelling to address this matter has been initiated by several governmental welfare authorities worldwide involving administrative data and machine learning algorithms. While previous studies have investigated risk factors relating to child maltreatment, several gaps remain as to understanding how such risk factors interact and whether predictive risk models perform differently for children with different features. By integrating Principal Component Analysis and K-Means clustering, this paper presents initial findings of our work on the identification of such features as well as their potential effect on current risk modelling frameworks. This approach allows examining existent, unidentified yet, clusters of New Zealand (NZ) children reported with care and protection concerns, as well as to analyse their inner structure, and evaluate the performance of prediction models trained cluster wise. We aim to discover the extent of clustering degree required as an early step in the development of predictive risk models for child maltreatment and so enhance the accuracy of such models intended for use by child protection authorities. The results from testing LASSO logistic regression models trained on identified clusters revealed no significant difference in their performance. The models, however, performed slightly better for two clusters including younger children. our results suggest that separate models might need to be developed for children of certain age to gain additional control over the error rates and to improve model accuracy. While results are promising, more evidence is needed to draw definitive conclusions, and further investigation is necessary.

3.Varying-coefficients for regional quantile via KNN-based LASSO with applications to health outcome study

Authors:Seyoung Park, Eun Ryung Lee, Hyokyoung G. Hong

Abstract: Health outcomes, such as body mass index and cholesterol levels, are known to be dependent on age and exhibit varying effects with their associated risk factors. In this paper, we propose a novel framework for dynamic modeling of the associations between health outcomes and risk factors using varying-coefficients (VC) regional quantile regression via K-nearest neighbors (KNN) fused Lasso, which captures the time-varying effects of age. The proposed method has strong theoretical properties, including a tight estimation error bound and the ability to detect exact clustered patterns under certain regularity conditions. To efficiently solve the resulting optimization problem, we develop an alternating direction method of multipliers (ADMM) algorithm. Our empirical results demonstrate the efficacy of the proposed method in capturing the complex age-dependent associations between health outcomes and their risk factors.

4.SLEM: Machine Learning for Path Modeling and Causal Inference with Super Learner Equation Modeling

Authors:Matthew J. Vowels

Abstract: Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions regarding the predictions of hypothetical interventions using observational data. Path models, Structural Equation Models (SEMs), and, more generally, Directed Acyclic Graphs (DAGs), provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon. Unlike DAGs, which make very few assumptions about the functional and parametric form, SEM assumes linearity. This can result in functional misspecification which prevents researchers from undertaking reliable effect size estimation. In contrast, we propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles. We empirically demonstrate its ability to provide consistent and unbiased estimates of causal effects, its competitive performance for linear models when compared with SEM, and highlight its superiority over SEM when dealing with non-linear relationships. We provide open-source code, and a tutorial notebook with example usage, accentuating the easy-to-use nature of the method.

5.Meta-Learning Operators to Optimality from Multi-Task Non-IID Data

Authors:Thomas T. C. K. Zhang, Leonardo F. Toso, James Anderson, Nikolai Matni

Abstract: A powerful concept behind much of the recent progress in machine learning is the extraction of common features across data from heterogeneous sources or tasks. Intuitively, using all of one's data to learn a common representation function benefits both computational effort and statistical generalization by leaving a smaller number of parameters to fine-tune on a given task. Toward theoretically grounding these merits, we propose a general setting of recovering linear operators $M$ from noisy vector measurements $y = Mx + w$, where the covariates $x$ may be both non-i.i.d. and non-isotropic. We demonstrate that existing isotropy-agnostic meta-learning approaches incur biases on the representation update, which causes the scaling of the noise terms to lose favorable dependence on the number of source tasks. This in turn can cause the sample complexity of representation learning to be bottlenecked by the single-task data size. We introduce an adaptation, $\texttt{De-bias & Feature-Whiten}$ ($\texttt{DFW}$), of the popular alternating minimization-descent (AMD) scheme proposed in Collins et al., (2021), and establish linear convergence to the optimal representation with noise level scaling down with the $\textit{total}$ source data size. This leads to generalization bounds on the same order as an oracle empirical risk minimizer. We verify the vital importance of $\texttt{DFW}$ on various numerical simulations. In particular, we show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data. Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications, such as in controls and dynamical systems.

6.Kernel Single Proxy Control for Deterministic Confounding

Authors:Liyuan Xu, Arthur Gretton

Abstract: We consider the problem of causal effect estimation with an unobserved confounder, where we observe a proxy variable that is associated with the confounder. Although Proxy Causal Learning (PCL) uses two proxy variables to recover the true causal effect, we show that a single proxy variable is sufficient for causal estimation if the outcome is generated deterministically, generalizing Control Outcome Calibration Approach (COCA). We propose two kernel-based methods for this setting: the first based on the two-stage regression approach, and the second based on a maximum moment restriction approach. We prove that both approaches can consistently estimate the causal effect, and we empirically demonstrate that we can successfully recover the causal effect on a synthetic dataset.