
Machine Learning (stat.ML)
Fri, 30 Jun 2023
1.Efficient uniform approximation using Random Vector Functional Link networks
Authors:Palina Salanevich, Olov Schavemaker
Abstract: A Random Vector Functional Link (RVFL) network is a depth-2 neural network with random inner weights and biases. As only the outer weights of such architectures need to be learned, the learning process boils down to a linear optimization task, allowing one to sidestep the pitfalls of nonconvex optimization problems. In this paper, we prove that an RVFL with ReLU activation functions can approximate Lipschitz continuous functions provided its hidden layer is exponentially wide in the input dimension. Although it has been established before that such approximation can be achieved in $L_2$ sense, we prove it for $L_\infty$ approximation error and Gaussian inner weights. To the best of our knowledge, our result is the first of this kind. We give a nonasymptotic lower bound for the number of hidden layer nodes, depending on, among other things, the Lipschitz constant of the target function, the desired accuracy, and the input dimension. Our method of proof is rooted in probability theory and harmonic analysis.
2.Generalized Time Warping Invariant Dictionary Learning for Time Series Classification and Clustering
Authors:Ruiyu Xu, Chao Wang, Yongxiang Li, Jianguo Wu
Abstract: Dictionary learning is an effective tool for pattern recognition and classification of time series data. Among various dictionary learning techniques, the dynamic time warping (DTW) is commonly used for dealing with temporal delays, scaling, transformation, and many other kinds of temporal misalignments issues. However, the DTW suffers overfitting or information loss due to its discrete nature in aligning time series data. To address this issue, we propose a generalized time warping invariant dictionary learning algorithm in this paper. Our approach features a generalized time warping operator, which consists of linear combinations of continuous basis functions for facilitating continuous temporal warping. The integration of the proposed operator and the dictionary learning is formulated as an optimization problem, where the block coordinate descent method is employed to jointly optimize warping paths, dictionaries, and sparseness coefficients. The optimized results are then used as hyperspace distance measures to feed classification and clustering algorithms. The superiority of the proposed method in terms of dictionary learning, classification, and clustering is validated through ten sets of public datasets in comparing with various benchmark methods.
3.The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit
Authors:Lorenzo Noci, Chuning Li, Mufan Bill Li, Bobby He, Thomas Hofmann, Chris Maddison, Daniel M. Roy
Abstract: In deep learning theory, the covariance matrix of the representations serves as a proxy to examine the network's trainability. Motivated by the success of Transformers, we study the covariance matrix of a modified Softmax-based attention model with skip connections in the proportional limit of infinite-depth-and-width. We show that at initialization the limiting distribution can be described by a stochastic differential equation (SDE) indexed by the depth-to-width ratio. To achieve a well-defined stochastic limit, the Transformer's attention mechanism is modified by centering the Softmax output at identity, and scaling the Softmax logits by a width-dependent temperature parameter. We examine the stability of the network through the corresponding SDE, showing how the scale of both the drift and diffusion can be elegantly controlled with the aid of residual connections. The existence of a stable SDE implies that the covariance structure is well-behaved, even for very large depth and width, thus preventing the notorious issues of rank degeneracy in deep attention models. Finally, we show, through simulations, that the SDE provides a surprisingly good description of the corresponding finite-size model. We coin the name shaped Transformer for these architectural modifications.
4.Practical and Asymptotically Exact Conditional Sampling in Diffusion Models
Authors:Luhuan Wu, Brian L. Trippe, Christian A. Naesseth, David M. Blei, John P. Cunningham
Abstract: Diffusion models have been successful on a range of conditional generation tasks including molecular design and text-to-image generation. However, these achievements have primarily depended on task-specific conditional training or error-prone heuristic approximations. Ideally, a conditional generation method should provide exact samples for a broad range of conditional distributions without requiring task-specific training. To this end, we introduce the Twisted Diffusion Sampler, or TDS. TDS is a sequential Monte Carlo (SMC) algorithm that targets the conditional distributions of diffusion models. The main idea is to use twisting, an SMC technique that enjoys good computational efficiency, to incorporate heuristic approximations without compromising asymptotic exactness. We first find in simulation and on MNIST image inpainting and class-conditional generation tasks that TDS provides a computational statistical trade-off, yielding more accurate approximations with many particles but with empirical improvements over heuristics with as few as two particles. We then turn to motif-scaffolding, a core task in protein design, using a TDS extension to Riemannian diffusion models. On benchmark test cases, TDS allows flexible conditioning criteria and often outperforms the state of the art.