
Machine Learning (stat.ML)
Mon, 10 Apr 2023
1.Approximation of Nonlinear Functionals Using Deep ReLU Networks
Authors:Linhao Song, Jun Fan, Di-Rong Chen, Ding-Xuan Zhou
Abstract: In recent years, functional neural networks have been proposed and studied in order to approximate nonlinear continuous functionals defined on $L^p([-1, 1]^s)$ for integers $s\ge1$ and $1\le p<\infty$. However, their theoretical properties are largely unknown beyond universality of approximation or the existing analysis does not apply to the rectified linear unit (ReLU) activation function. To fill in this void, we investigate here the approximation power of functional deep neural networks associated with the ReLU activation function by constructing a continuous piecewise linear interpolation under a simple triangulation. In addition, we establish rates of approximation of the proposed functional deep ReLU networks under mild regularity conditions. Finally, our study may also shed some light on the understanding of functional data learning algorithms.
2.Reflected Diffusion Models
Authors:Aaron Lou, Stefano Ermon
Abstract: Score-based diffusion models learn to reverse a stochastic differential equation that maps data to noise. However, for complex tasks, numerical error can compound and result in highly unnatural samples. Previous work mitigates this drift with thresholding, which projects to the natural data domain (such as pixel space for images) after each diffusion step, but this leads to a mismatch between the training and generative processes. To incorporate data constraints in a principled manner, we present Reflected Diffusion Models, which instead reverse a reflected stochastic differential equation evolving on the support of the data. Our approach learns the perturbed score function through a generalize score matching loss and extends key components of standard diffusion models including diffusion guidance, likelihood-based training, and ODE sampling. We also bridge the theoretical gap with thresholding: such schemes are just discretizations of reflected SDEs. On standard image benchmarks, our method is competitive with or surpasses the state of the art and, for classifier-free guidance, our approach enables fast exact sampling with ODEs and produces more faithful samples under high guidance weight.