
Machine Learning (stat.ML)
Thu, 15 Jun 2023
1.On Certified Generalization in Structured Prediction
Authors:Bastian Boll, Christoph Schnörr
Abstract: In structured prediction, target objects have rich internal structure which does not factorize into independent components and violates common i.i.d. assumptions. This challenge becomes apparent through the exponentially large output space in applications such as image segmentation or scene graph generation. We present a novel PAC-Bayesian risk bound for structured prediction wherein the rate of generalization scales not only with the number of structured examples but also with their size. The underlying assumption, conforming to ongoing research on generative models, is that data are generated by the Knothe-Rosenblatt rearrangement of a factorizing reference measure. This allows to explicitly distill the structure between random output variables into a Wasserstein dependency matrix. Our work makes a preliminary step towards leveraging powerful generative models to establish generalization bounds for discriminative downstream tasks in the challenging setting of structured prediction.
2.Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative Models
Authors:Gen Li, Yuting Wei, Yuxin Chen, Yuejie Chi
Abstract: Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to reliable estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model (DDPM)), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Our theory imposes only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), and is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.
3.A Heavy-Tailed Algebra for Probabilistic Programming
Authors:Feynman Liang, Liam Hodgkinson, Michael W. Mahoney
Abstract: Despite the successes of probabilistic models based on passing noise through neural networks, recent work has identified that such methods often fail to capture tail behavior accurately, unless the tails of the base distribution are appropriately calibrated. To overcome this deficiency, we propose a systematic approach for analyzing the tails of random variables, and we illustrate how this approach can be used during the static analysis (before drawing samples) pass of a probabilistic programming language compiler. To characterize how the tails change under various operations, we develop an algebra which acts on a three-parameter family of tail asymptotics and which is based on the generalized Gamma distribution. Our algebraic operations are closed under addition and multiplication; they are capable of distinguishing sub-Gaussians with differing scales; and they handle ratios sufficiently well to reproduce the tails of most important statistical distributions directly from their definitions. Our empirical results confirm that inference algorithms that leverage our heavy-tailed algebra attain superior performance across a number of density modeling and variational inference tasks.
4.Class-Conditional Conformal Prediction With Many Classes
Authors:Tiffany Ding, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J. Tibshirani
Abstract: Standard conformal prediction methods provide a marginal coverage guarantee, which means that for a random test point, the conformal prediction set contains the true label with a user-chosen probability. In many classification problems, we would like to obtain a stronger guarantee -- that for test points of a specific class, the prediction set contains the true label with the same user-chosen probability. Existing conformal prediction methods do not work well when there is a limited amount of labeled data per class, as is often the case in real applications where the number of classes is large. We propose a method called clustered conformal prediction, which clusters together classes that have "similar" conformal scores and then performs conformal prediction at the cluster level. Based on empirical evaluation across four image data sets with many (up to 1000) classes, we find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.