
Machine Learning (stat.ML)
Mon, 05 Jun 2023
1.Active Ranking of Experts Based on their Performances in Many Tasks
Authors:El Mehdi Saad MISTEA, Nicolas Verzelen MISTEA, Alexandra Carpentier
Abstract: We consider the problem of ranking n experts based on their performances on d tasks. We make a monotonicity assumption stating that for each pair of experts, one outperforms the other on all tasks. We consider the sequential setting where in each round, the learner has access to noisy evaluations of actively chosen pair of expert-task, given the information available up to the actual round. Given a confidence parameter $\delta$ $\in$ (0, 1), we provide strategies allowing to recover the correct ranking of experts and develop a bound on the total number of queries made by our algorithm that hold with probability at least 1 -- $\delta$. We show that our strategy is adaptive to the complexity of the problem (our bounds are instance dependent), and develop matching lower bounds up to a poly-logarithmic factor. Finally, we adapt our strategy to the relaxed problem of best expert identification and provide numerical simulation consistent with our theoretical results.
2.Covariance Adaptive Best Arm Identification
Authors:El Mehdi Saad MISTEA, Gilles Blanchard LMO, DATASHAPE, Nicolas Verzelen MISTEA
Abstract: We consider the problem of best arm identification in the multi-armed bandit model, under fixed confidence. Given a confidence input $\delta$, the goal is to identify the arm with the highest mean reward with a probability of at least 1 -- $\delta$, while minimizing the number of arm pulls. While the literature provides solutions to this problem under the assumption of independent arms distributions, we propose a more flexible scenario where arms can be dependent and rewards can be sampled simultaneously. This framework allows the learner to estimate the covariance among the arms distributions, enabling a more efficient identification of the best arm. The relaxed setting we propose is relevant in various applications, such as clinical trials, where similarities between patients or drugs suggest underlying correlations in the outcomes. We introduce new algorithms that adapt to the unknown covariance of the arms and demonstrate through theoretical guarantees that substantial improvement can be achieved over the standard setting. Additionally, we provide new lower bounds for the relaxed setting and present numerical simulations that support their theoretical findings.
3.Conformal Prediction with Missing Values
Authors:Margaux Zaffran, Aymeric Dieuleveut, Julie Josse, Yaniv Romano
Abstract: Conformal prediction is a theoretically grounded framework for constructing predictive intervals. We study conformal prediction with missing values in the covariates -- a setting that brings new challenges to uncertainty quantification. We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution and almost all imputation functions. However, we emphasize that the average coverage varies depending on the pattern of missing values: conformal methods tend to construct prediction intervals that under-cover the response conditionally to some missing patterns. This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number. We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk, thus achieving valid coverage conditionally to any given data point. Moreover, we examine the case of a linear model, which demonstrates the importance of our proposal in overcoming the heteroskedasticity induced by missing values. Using synthetic and data from critical care, we corroborate our theory and report improved performance of our methods.
4.Realising Synthetic Active Inference Agents, Part II: Variational Message Updates
Authors:Thijs van de Laar, Magnus Koudahl, Bert de Vries
Abstract: The Free Energy Principle (FEP) describes (biological) agents as minimising a variational Free Energy (FE) with respect to a generative model of their environment. Active Inference (AIF) is a corollary of the FEP that describes how agents explore and exploit their environment by minimising an expected FE objective. In two related papers, we describe a scalable, epistemic approach to synthetic AIF agents, by message passing on free-form Forney-style Factor Graphs (FFGs). A companion paper (part I) introduces a Constrained FFG (CFFG) notation that visually represents (generalised) FE objectives for AIF. The current paper (part II) derives message passing algorithms that minimise (generalised) FE objectives on a CFFG by variational calculus. A comparison between simulated Bethe and generalised FE agents illustrates how synthetic AIF induces epistemic behaviour on a T-maze navigation task. With a full message passing account of synthetic AIF agents, it becomes possible to derive and reuse message updates across models and move closer to industrial applications of synthetic AIF.
5.Input gradient diversity for neural network ensembles
Authors:Trung Trinh, Markus Heinonen, Luigi Acerbi, Samuel Kaski
Abstract: Deep Ensembles (DEs) demonstrate improved accuracy, calibration and robustness to perturbations over single neural networks partly due to their functional diversity. Particle-based variational inference (ParVI) methods enhance diversity by formalizing a repulsion term based on a network similarity kernel. However, weight-space repulsion is inefficient due to over-parameterization, while direct function-space repulsion has been found to produce little improvement over DEs. To sidestep these difficulties, we propose First-order Repulsive Deep Ensemble (FoRDE), an ensemble learning method based on ParVI, which performs repulsion in the space of first-order input gradients. As input gradients uniquely characterize a function up to translation and are much smaller in dimension than the weights, this method guarantees that ensemble members are functionally different. Intuitively, diversifying the input gradients encourages each network to learn different features, which is expected to improve the robustness of an ensemble. Experiments on image classification datasets show that FoRDE significantly outperforms the gold-standard DEs and other ensemble methods in accuracy and calibration under covariate shift due to input perturbations.
6.Enhancing naive classifier for positive unlabeled data based on logistic regression approach
Authors:Mateusz Płatek, Jan Mielniczuk
Abstract: We argue that for analysis of Positive Unlabeled (PU) data under Selected Completely At Random (SCAR) assumption it is fruitful to view the problem as fitting of misspecified model to the data. Namely, we show that the results on misspecified fit imply that in the case when posterior probability of the response is modelled by logistic regression, fitting the logistic regression to the observable PU data which {\it does not} follow this model, still yields the vector of estimated parameters approximately colinear with the true vector of parameters. This observation together with choosing the intercept of the classifier based on optimisation of analogue of F1 measure yields a classifier which performs on par or better than its competitors on several real data sets considered.
7.MM-DAG: Multi-task DAG Learning for Multi-modal Data -- with Application for Traffic Congestion Analysis
Authors:Tian Lan, Ziyue Li, Zhishuai Li, Lei Bai, Man Li, Fugee Tsung, Wolfgang Ketter, Rui Zhao, Chen Zhang
Abstract: This paper proposes to learn Multi-task, Multi-modal Direct Acyclic Graphs (MM-DAGs), which are commonly observed in complex systems, e.g., traffic, manufacturing, and weather systems, whose variables are multi-modal with scalars, vectors, and functions. This paper takes the traffic congestion analysis as a concrete case, where a traffic intersection is usually regarded as a DAG. In a road network of multiple intersections, different intersections can only have some overlapping and distinct variables observed. For example, a signalized intersection has traffic light-related variables, whereas unsignalized ones do not. This encourages the multi-task design: with each DAG as a task, the MM-DAG tries to learn the multiple DAGs jointly so that their consensus and consistency are maximized. To this end, we innovatively propose a multi-modal regression for linear causal relationship description of different variables. Then we develop a novel Causality Difference (CD) measure and its differentiable approximator. Compared with existing SOTA measures, CD can penalize the causal structural difference among DAGs with distinct nodes and can better consider the uncertainty of causal orders. We rigidly prove our design's topological interpretation and consistency properties. We conduct thorough simulations and one case study to show the effectiveness of our MM-DAG. The code is available under https://github.com/Lantian72/MM-DAG
8.The $L^\infty$ Learnability of Reproducing Kernel Hilbert Spaces
Authors:Hongrui Chen, Jihao Long, Lei Wu
Abstract: In this work, we analyze the learnability of reproducing kernel Hilbert spaces (RKHS) under the $L^\infty$ norm, which is critical for understanding the performance of kernel methods and random feature models in safety- and security-critical applications. Specifically, we relate the $L^\infty$ learnability of a RKHS to the spectrum decay of the associate kernel and both lower bounds and upper bounds of the sample complexity are established. In particular, for dot-product kernels on the sphere, we identify conditions when the $L^\infty$ learning can be achieved with polynomial samples. Let $d$ denote the input dimension and assume the kernel spectrum roughly decays as $\lambda_k\sim k^{-1-\beta}$ with $\beta>0$. We prove that if $\beta$ is independent of the input dimension $d$, then functions in the RKHS can be learned efficiently under the $L^\infty$ norm, i.e., the sample complexity depends polynomially on $d$. In contrast, if $\beta=1/\mathrm{poly}(d)$, then the $L^\infty$ learning requires exponentially many samples.
9.Learning nonparametric latent causal graphs with unknown interventions
Authors:Yibo Jiang, Bryon Aragam
Abstract: We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in a measurement model, i.e. causal graphical models where dependence between observed variables is insignificant compared to dependence between latent representations, without making parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. Experiments confirm that the latent graph can be recovered from data using our theoretical results. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness.
10.Causal Discovery using Bayesian Model Selection
Authors:Anish Dhir, Mark van der Wilk
Abstract: With only observational data on two variables, and without other assumptions, it is not possible to infer which one causes the other. Much of the causal literature has focused on guaranteeing identifiability of causal direction in statistical models for datasets where strong assumptions hold, such as additive noise or restrictions on parameter count. These methods are then subsequently tested on realistic datasets, most of which violate their assumptions. Building on previous attempts, we show how to use causal assumptions within the Bayesian framework. This allows us to specify models with realistic assumptions, while also encoding independent causal mechanisms, leading to an asymmetry between the causal directions. Identifying causal direction then becomes a Bayesian model selection problem. We analyse why Bayesian model selection works for known identifiable cases and flexible model classes, while also providing correctness guarantees about its behaviour. To demonstrate our approach, we construct a Bayesian non-parametric model that can flexibly model the joint. We then outperform previous methods on a wide range of benchmark datasets with varying data generating assumptions showing the usefulness of our method.
11.Random Distribution Shift in Refugee Placement: Strategies for Building Robust Models
Authors:Kirk Bansak, Elisabeth Paulson, Dominik Rothenhäusler
Abstract: Algorithmic assignment of refugees and asylum seekers to locations within host countries has gained attention in recent years, with implementations in the US and Switzerland. These approaches use data on past arrivals to generate machine learning models that can be used (along with assignment algorithms) to match families to locations, with the goal of maximizing a policy-relevant integration outcome such as employment status after a certain duration. Existing implementations and research train models to predict the policy outcome directly, and use these predictions in the assignment procedure. However, the merits of this approach, particularly in non-stationary settings, has not been previously explored. This study proposes and compares three different modeling strategies: the standard approach described above, an approach that uses newer data and proxy outcomes, and a hybrid approach. We show that the hybrid approach is robust to both distribution shift and weak proxy relationships -- the failure points of the other two methods, respectively. We compare these approaches empirically using data on asylum seekers in the Netherlands. Surprisingly, we find that both the proxy and hybrid approaches out-perform the standard approach in practice. These insights support the development of a real-world recommendation tool currently used by NGOs and government agencies.
12.Using Sequences of Life-events to Predict Human Lives
Authors:Germans Savcisens, Tina Eliassi-Rad, Lars Kai Hansen, Laust Mortensen, Lau Lilleholt, Anna Rogers, Ingo Zettler, Sune Lehmann
Abstract: Over the past decade, machine learning has revolutionized computers' ability to analyze text through flexible computational models. Due to their structural similarity to written language, transformer-based architectures have also shown promise as tools to make sense of a range of multi-variate sequences from protein-structures, music, electronic health records to weather-forecasts. We can also represent human lives in a way that shares this structural similarity to language. From one perspective, lives are simply sequences of events: People are born, visit the pediatrician, start school, move to a new location, get married, and so on. Here, we exploit this similarity to adapt innovations from natural language processing to examine the evolution and predictability of human lives based on detailed event sequences. We do this by drawing on arguably the most comprehensive registry data in existence, available for an entire nation of more than six million individuals across decades. Our data include information about life-events related to health, education, occupation, income, address, and working hours, recorded with day-to-day resolution. We create embeddings of life-events in a single vector space showing that this embedding space is robust and highly structured. Our models allow us to predict diverse outcomes ranging from early mortality to personality nuances, outperforming state-of-the-art models by a wide margin. Using methods for interpreting deep learning models, we probe the algorithm to understand the factors that enable our predictions. Our framework allows researchers to identify new potential mechanisms that impact life outcomes and associated possibilities for personalized interventions.