arXiv daily

Machine Learning (stat.ML)

Fri, 09 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks

Authors:Ziyi Huang, Henry Lam, Haofeng Zhang

Abstract: Uncertainty quantification (UQ) is important for reliability assessment and enhancement of machine learning models. In deep learning, uncertainties arise not only from data, but also from the training procedure that often injects substantial noises and biases. These hinder the attainment of statistical guarantees and, moreover, impose computational challenges on UQ due to the need for repeated network retraining. Building upon the recent neural tangent kernel theory, we create statistically guaranteed schemes to principally \emph{quantify}, and \emph{remove}, the procedural uncertainty of over-parameterized neural networks with very low computation effort. In particular, our approach, based on what we call a procedural-noise-correcting (PNC) predictor, removes the procedural uncertainty by using only \emph{one} auxiliary network that is trained on a suitably labeled data set, instead of many retrained networks employed in deep ensembles. Moreover, by combining our PNC predictor with suitable light-computation resampling methods, we build several approaches to construct asymptotically exact-coverage confidence intervals using as low as four trained networks without additional overheads.

2.Explaining Predictive Uncertainty with Information Theoretic Shapley Values

Authors:David S. Watson, Joshua O'Hara, Niek Tax, Richard Mudd, Ido Guy

Abstract: Researchers in explainable artificial intelligence have developed numerous methods for helping users understand the predictions of complex supervised learning models. By contrast, explaining the $\textit{uncertainty}$ of model outputs has received relatively little attention. We adapt the popular Shapley value framework to explain various types of predictive uncertainty, quantifying each feature's contribution to the conditional entropy of individual model outputs. We consider games with modified characteristic functions and find deep connections between the resulting Shapley values and fundamental quantities from information theory and conditional independence testing. We outline inference procedures for finite sample error rate control with provable guarantees, and implement an efficient algorithm that performs well in a range of experiments on real and simulated data. Our method has applications to covariate shift detection, active learning, feature selection, and active feature-value acquisition.

3.How Sparse Can We Prune A Deep Network: A Geometric Viewpoint

Authors:Qiaozhe Zhang, Ruijie Zhang, Jun Sun, Yingzhuang Liu

Abstract: Overparameterization constitutes one of the most significant hallmarks of deep neural networks. Though it can offer the advantage of outstanding generalization performance, it meanwhile imposes substantial storage burden, thus necessitating the study of network pruning. A natural and fundamental question is: How sparse can we prune a deep network (with almost no hurt on the performance)? To address this problem, in this work we take a first principles approach, specifically, by merely enforcing the sparsity constraint on the original loss function, we're able to characterize the sharp phase transition point of pruning ratio, which corresponds to the boundary between the feasible and the infeasible, from the perspective of high-dimensional geometry. It turns out that the phase transition point of pruning ratio equals the squared Gaussian width of some convex body resulting from the $l_1$-regularized loss function, normalized by the original dimension of parameters. As a byproduct, we provide a novel network pruning algorithm which is essentially a global one-shot pruning one. Furthermore, we provide efficient countermeasures to address the challenges in computing the involved Gaussian width, including the spectrum estimation of a large-scale Hessian matrix and dealing with the non-definite positiveness of a Hessian matrix. It is demonstrated that the predicted pruning ratio threshold coincides very well with the actual value obtained from the experiments and our proposed pruning algorithm can achieve competitive or even better performance than the existing pruning algorithms. All codes are available at: https://github.com/QiaozheZhang/Global-One-shot-Pruning

4.Federated Learning You May Communicate Less Often!

Authors:Milad Sefidgaran, Romain Chor, Abdellatif Zaidi, Yijun Wan

Abstract: We investigate the generalization error of statistical learning models in a Federated Learning (FL) setting. Specifically, we study the evolution of the generalization error with the number of communication rounds between the clients and the parameter server, i.e., the effect on the generalization error of how often the local models as computed by the clients are aggregated at the parameter server. We establish PAC-Bayes and rate-distortion theoretic bounds on the generalization error that account explicitly for the effect of the number of rounds, say $ R \in \mathbb{N}$, in addition to the number of participating devices $K$ and individual datasets size $n$. The bounds, which apply in their generality for a large class of loss functions and learning algorithms, appear to be the first of their kind for the FL setting. Furthermore, we apply our bounds to FL-type Support Vector Machines (FSVM); and we derive (more) explicit bounds on the generalization error in this case. In particular, we show that the generalization error of FSVM increases with $R$, suggesting that more frequent communication with the parameter server diminishes the generalization power of such learning algorithms. Combined with that the empirical risk generally decreases for larger values of $R$, this indicates that $R$ might be a parameter to optimize in order to minimize the population risk of FL algorithms. Moreover, specialized to the case $R=1$ (sometimes referred to as "one-shot" FL or distributed learning) our bounds suggest that the generalization error of the FL setting decreases faster than that of centralized learning by a factor of $\mathcal{O}(\sqrt{\log(K)/K})$, thereby generalizing recent findings in this direction to arbitrary loss functions and algorithms. The results of this paper are also validated on some experiments.