arXiv daily

Image and Video Processing (eess.IV)

Wed, 13 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Improving Deep Learning-based Defect Detection on Window Frames with Image Processing Strategies

Authors:Jorge Vasquez, Hemant K. Sharma, Tomotake Furuhata, Kenji Shimada

Abstract: Detecting subtle defects in window frames, including dents and scratches, is vital for upholding product integrity and sustaining a positive brand perception. Conventional machine vision systems often struggle to identify these defects in challenging environments like construction sites. In contrast, modern vision systems leveraging machine and deep learning (DL) are emerging as potent tools, particularly for cosmetic inspections. However, the promise of DL is yet to be fully realized. A few manufacturers have established a clear strategy for AI integration in quality inspection, hindered mainly by issues like scarce clean datasets and environmental changes that compromise model accuracy. Addressing these challenges, our study presents an innovative approach that amplifies defect detection in DL models, even with constrained data resources. The paper proposes a new defect detection pipeline called InspectNet (IPT-enhanced UNET) that includes the best combination of image enhancement and augmentation techniques for pre-processing the dataset and a Unet model tuned for window frame defect detection and segmentation. Experiments were carried out using a Spot Robot doing window frame inspections . 16 variations of the dataset were constructed using different image augmentation settings. Results of the experiments revealed that, on average, across all proposed evaluation measures, Unet outperformed all other algorithms when IPT-enhanced augmentations were applied. In particular, when using the best dataset, the average Intersection over Union (IoU) values achieved were IPT-enhanced Unet, reaching 0.91 of mIoU.

2.Deep Learning-based Synthetic High-Resolution In-Depth Imaging Using an Attachable Dual-element Endoscopic Ultrasound Probe

Authors:Hah Min Lew, Jae Seong Kim, Moon Hwan Lee, Jaegeun Park, Sangyeon Youn, Hee Man Kim, Jihun Kim, Jae Youn Hwang

Abstract: Endoscopic ultrasound (EUS) imaging has a trade-off between resolution and penetration depth. By considering the in-vivo characteristics of human organs, it is necessary to provide clinicians with appropriate hardware specifications for precise diagnosis. Recently, super-resolution (SR) ultrasound imaging studies, including the SR task in deep learning fields, have been reported for enhancing ultrasound images. However, most of those studies did not consider ultrasound imaging natures, but rather they were conventional SR techniques based on downsampling of ultrasound images. In this study, we propose a novel deep learning-based high-resolution in-depth imaging probe capable of offering low- and high-frequency ultrasound image pairs. We developed an attachable dual-element EUS probe with customized low- and high-frequency ultrasound transducers under small hardware constraints. We also designed a special geared structure to enable the same image plane. The proposed system was evaluated with a wire phantom and a tissue-mimicking phantom. After the evaluation, 442 ultrasound image pairs from the tissue-mimicking phantom were acquired. We then applied several deep learning models to obtain synthetic high-resolution in-depth images, thus demonstrating the feasibility of our approach for clinical unmet needs. Furthermore, we quantitatively and qualitatively analyzed the results to find a suitable deep-learning model for our task. The obtained results demonstrate that our proposed dual-element EUS probe with an image-to-image translation network has the potential to provide synthetic high-frequency ultrasound images deep inside tissues.

3.Topology-inspired Cross-domain Network for Developmental Cervical Stenosis Quantification

Authors:Zhenxi Zhang, Yanyang Wang, Yao Wu, Weifei Wu

Abstract: Developmental Canal Stenosis (DCS) quantification is crucial in cervical spondylosis screening. Compared with quantifying DCS manually, a more efficient and time-saving manner is provided by deep keypoint localization networks, which can be implemented in either the coordinate or the image domain. However, the vertebral visualization features often lead to abnormal topological structures during keypoint localization, including keypoint distortion with edges and weakly connected structures, which cannot be fully suppressed in either the coordinate or image domain alone. To overcome this limitation, a keypoint-edge and a reparameterization modules are utilized to restrict these abnormal structures in a cross-domain manner. The keypoint-edge constraint module restricts the keypoints on the edges of vertebrae, which ensures that the distribution pattern of keypoint coordinates is consistent with those for DCS quantification. And the reparameterization module constrains the weakly connected structures in image-domain heatmaps with coordinates combined. Moreover, the cross-domain network improves spatial generalization by utilizing heatmaps and incorporating coordinates for accurate localization, which avoids the trade-off between these two properties in an individual domain. Comprehensive results of distinct quantification tasks show the superiority and generability of the proposed Topology-inspired Cross-domain Network (TCN) compared with other competing localization methods.

4.Improving HEVC Encoding of Rendered Video Data Using True Motion Information

Authors:Christian Herglotz, David Müller, Andreas Weinlich, Frank Bauer, Michael Ortner, Marc Stamminger, André Kaup

Abstract: This paper shows that motion vectors representing the true motion of an object in a scene can be exploited to improve the encoding process of computer generated video sequences. Therefore, a set of sequences is presented for which the true motion vectors of the corresponding objects were generated on a per-pixel basis during the rendering process. In addition to conventional motion estimation methods, it is proposed to exploit the computer generated motion vectors to enhance the ratedistortion performance. To this end, a motion vector mapping method including disocclusion handling is presented. It is shown that mean rate savings of 3.78% can be achieved.

5.Limited-Angle Tomography Reconstruction via Deep End-To-End Learning on Synthetic Data

Authors:Thomas Germer, Jan Robine, Sebastian Konietzny, Stefan Harmeling, Tobias Uelwer

Abstract: Computed tomography (CT) has become an essential part of modern science and medicine. A CT scanner consists of an X-ray source that is spun around an object of interest. On the opposite end of the X-ray source, a detector captures X-rays that are not absorbed by the object. The reconstruction of an image is a linear inverse problem, which is usually solved by filtered back projection. However, when the number of measurements is small, the reconstruction problem is ill-posed. This is for example the case when the X-ray source is not spun completely around the object, but rather irradiates the object only from a limited angle. To tackle this problem, we present a deep neural network that is trained on a large amount of carefully-crafted synthetic data and can perform limited-angle tomography reconstruction even for only 30{\deg} or 40{\deg} sinograms. With our approach we won the first place in the Helsinki Tomography Challenge 2022.

6.Implicit Neural Multiple Description for DNA-based data storage

Authors:Trung Hieu Le, Xavier Pic, Jeremy Mateos, Marc Antonini

Abstract: DNA exhibits remarkable potential as a data storage solution due to its impressive storage density and long-term stability, stemming from its inherent biomolecular structure. However, developing this novel medium comes with its own set of challenges, particularly in addressing errors arising from storage and biological manipulations. These challenges are further conditioned by the structural constraints of DNA sequences and cost considerations. In response to these limitations, we have pioneered a novel compression scheme and a cutting-edge Multiple Description Coding (MDC) technique utilizing neural networks for DNA data storage. Our MDC method introduces an innovative approach to encoding data into DNA, specifically designed to withstand errors effectively. Notably, our new compression scheme overperforms classic image compression methods for DNA-data storage. Furthermore, our approach exhibits superiority over conventional MDC methods reliant on auto-encoders. Its distinctive strengths lie in its ability to bypass the need for extensive model training and its enhanced adaptability for fine-tuning redundancy levels. Experimental results demonstrate that our solution competes favorably with the latest DNA data storage methods in the field, offering superior compression rates and robust noise resilience.