arXiv daily

Image and Video Processing (eess.IV)

Tue, 11 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Encoder Complexity Control in SVT-AV1 by Speed-Adaptive Preset Switching

Authors:Lena Eichermüller, Gaurang Chaudhari, Ioannis Katsavounidis, Zhijun Lei, Hassene Tmar, André Kaup, Christian Herglotz

Abstract: Current developments in video encoding technology lead to continuously improving compression performance but at the expense of increasingly higher computational demands. Regarding the online video traffic increases during the last years and the concomitant need for video encoding, encoder complexity control mechanisms are required to restrict the processing time to a sufficient extent in order to find a reasonable trade-off between performance and complexity. We present a complexity control mechanism in SVT-AV1 by using speed-adaptive preset switching to comply with the remaining time budget. This method enables encoding with a user-defined time constraint within the complete preset range with an average precision of 8.9 \% without introducing any additional latencies.

2.DRMC: A Generalist Model with Dynamic Routing for Multi-Center PET Image Synthesis

Authors:Zhiwen Yang, Yang Zhou, Hui Zhang, Bingzheng Wei, Yubo Fan, Yan Xu

Abstract: Multi-center positron emission tomography (PET) image synthesis aims at recovering low-dose PET images from multiple different centers. The generalizability of existing methods can still be suboptimal for a multi-center study due to domain shifts, which result from non-identical data distribution among centers with different imaging systems/protocols. While some approaches address domain shifts by training specialized models for each center, they are parameter inefficient and do not well exploit the shared knowledge across centers. To address this, we develop a generalist model that shares architecture and parameters across centers to utilize the shared knowledge. However, the generalist model can suffer from the center interference issue, \textit{i.e.} the gradient directions of different centers can be inconsistent or even opposite owing to the non-identical data distribution. To mitigate such interference, we introduce a novel dynamic routing strategy with cross-layer connections that routes data from different centers to different experts. Experiments show that our generalist model with dynamic routing (DRMC) exhibits excellent generalizability across centers. Code and data are available at: https://github.com/Yaziwel/Multi-Center-PET-Image-Synthesis.

3.APRF: Anti-Aliasing Projection Representation Field for Inverse Problem in Imaging

Authors:Zixuan Chen, Lingxiao Yang, Jianhuang Lai, Xiaohua Xie

Abstract: Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging that aims to acquire high-quality CT images based on sparsely-sampled measurements. Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images. However, these methods have not considered the correlation between adjacent projection views, resulting in aliasing artifacts on SV sinograms. To address this issue, we propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF), which can build the continuous representation between adjacent projection views via the spatial constraints. Specifically, APRF only needs SV sinograms for training, which first employs a line-segment sampling module to estimate the distribution of projection views in a local region, and then synthesizes the corresponding sinogram values using center-based line integral module. After training APRF on a single SV sinogram itself, it can synthesize the corresponding dense-view (DV) sinogram with consistent continuity. High-quality CT images can be obtained by applying re-projection techniques on the predicted DV sinograms. Extensive experiments on CT images demonstrate that APRF outperforms state-of-the-art methods, yielding more accurate details and fewer artifacts. Our code will be publicly available soon.