arXiv daily

Image and Video Processing (eess.IV)

Tue, 18 Apr 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Cashew dataset generation using augmentation and RaLSGAN and a transfer learning based tinyML approach towards disease detection

Authors:Varsha Jayaprakash, Akilesh K, Ajay kumar, Balamurugan M. S, Manoj Kumar Rajagopal

Abstract: Cashew is one of the most extensively consumed nuts in the world, and it is also known as a cash crop. A tree may generate a substantial yield in a few months and has a lifetime of around 70 to 80 years. Yet, in addition to the benefits, there are certain constraints to its cultivation. With the exception of parasites and algae, anthracnose is the most common disease affecting trees. When it comes to cashew, the dense structure of the tree makes it difficult to diagnose the disease with ease compared to short crops. Hence, we present a dataset that exclusively consists of healthy and diseased cashew leaves and fruits. The dataset is authenticated by adding RGB color transformation to highlight diseased regions, photometric and geometric augmentations, and RaLSGAN to enlarge the initial collection of images and boost performance in real-time situations when working with a constrained dataset. Further, transfer learning is used to test the classification efficiency of the dataset using algorithms such as MobileNet and Inception. TensorFlow lite is utilized to develop these algorithms for disease diagnosis utilizing drones in real-time. Several post-training optimization strategies are utilized, and their memory size is compared. They have proven their effectiveness by delivering high accuracy (up to 99%) and a decrease in memory and latency, making them ideal for use in applications with limited resources.

2.Making Thermal Imaging More Equitable and Accurate: Resolving Solar Loading Biases

Authors:Ellin Q. Zhao, Alexander Vilesov, Shreeram Athreya, Pradyumna Chari, Jeanette Merlos, Kendall Millett, Nia St. Cyr, Laleh Jalilian, Achuta Kadambi

Abstract: Thermal cameras and thermal point detectors are used to measure the temperature of human skin. These are important devices that are used everyday in clinical and mass screening settings, particularly in an epidemic. Unfortunately, despite the wide use of thermal sensors, the temperature estimates from thermal sensors do not work well in uncontrolled scene conditions. Previous work has studied the effect of wind and other environment factors on skin temperature, but has not considered the heating effect from sunlight, which is termed solar loading. Existing device manufacturers recommend that a subject who has been outdoors in sun re-acclimate to an indoor environment after a waiting period. The waiting period, up to 30 minutes, is insufficient for a rapid screening tool. Moreover, the error bias from solar loading is greater for darker skin tones since melanin absorbs solar radiation. This paper explores two approaches to address this problem. The first approach uses transient behavior of cooling to more quickly extrapolate the steady state temperature. A second approach explores the spatial modulation of solar loading, to propose single-shot correction with a wide-field thermal camera. A real world dataset comprising of thermal point, thermal image, subjective, and objective measurements of melanin is collected with statistical significance for the effect size observed. The single-shot correction scheme is shown to eliminate solar loading bias in the time of a typical frame exposure (33ms).

3.Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks

Authors:Ragnhild Holden Helland, Alexandros Ferles, André Pedersen, Ivar Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S. Berger, Tora Dunås, Marco Conti Nibali, Julia Furtner, Shawn Hervey-Jumper, Albert J. S. Idema, Barbara Kiesel, Rishi Nandoe Tewari, Emmanuel Mandonnet, Domenique M. J. Müller, Pierre A. Robe, Marco Rossi, Lisa M. Sagberg, Tommaso Sciortino, Tom Aalders, Michiel Wagemakers, Georg Widhalm, Marnix G. Witte, Aeilko H. Zwinderman, Paulina L. Majewska, Asgeir S. Jakola, Ole Solheim, Philip C. De Witt Hamer, Ingerid Reinertsen, Roelant S. Eijgelaar, David Bouget

Abstract: Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61\% Dice score, and the best classification performance was about 80\% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.

4.Early detection of hip periprosthetic joint infections through CNN on Computed Tomography images

Authors:Francesco Guarnera, Alessia Rondinella, Oliver Giudice, Alessandro Ortis, Sebastiano Battiato, Francesco Rundo, Giorgio Fallica, Francesco Traina, Sabrina Conoci

Abstract: Early detection of an infection prior to prosthesis removal (e.g., hips, knees or other areas) would provide significant benefits to patients. Currently, the detection task is carried out only retrospectively with a limited number of methods relying on biometric or other medical data. The automatic detection of a periprosthetic joint infection from tomography imaging is a task never addressed before. This study introduces a novel method for early detection of the hip prosthesis infections analyzing Computed Tomography images. The proposed solution is based on a novel ResNeSt Convolutional Neural Network architecture trained on samples from more than 100 patients. The solution showed exceptional performance in detecting infections with an experimental high level of accuracy and F-score.

5.Fibroglandular Tissue Segmentation in Breast MRI using Vision Transformers -- A multi-institutional evaluation

Authors:Gustav Müller-Franzes, Fritz Müller-Franzes, Luisa Huck, Vanessa Raaff, Eva Kemmer, Firas Khader, Soroosh Tayebi Arasteh, Teresa Nolte, Jakob Nikolas Kather, Sven Nebelung, Christiane Kuhl, Daniel Truhn

Abstract: Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement. In this retrospective study, we developed and evaluated a transformer-based neural network for breast segmentation (TraBS) in multi-institutional MRI data, and compared its performance to the well established convolutional neural network nnUNet. TraBS and nnUNet were trained and tested on 200 internal and 40 external breast MRI examinations using manual segmentations generated by experienced human readers. Segmentation performance was assessed in terms of the Dice score and the average symmetric surface distance. The Dice score for nnUNet was lower than for TraBS on the internal testset (0.909$\pm$0.069 versus 0.916$\pm$0.067, P<0.001) and on the external testset (0.824$\pm$0.144 versus 0.864$\pm$0.081, P=0.004). Moreover, the average symmetric surface distance was higher (=worse) for nnUNet than for TraBS on the internal (0.657$\pm$2.856 versus 0.548$\pm$2.195, P=0.001) and on the external testset (0.727$\pm$0.620 versus 0.584$\pm$0.413, P=0.03). Our study demonstrates that transformer-based networks improve the quality of fibroglandular tissue segmentation in breast MRI compared to convolutional-based models like nnUNet. These findings might help to enhance the accuracy of breast density and parenchymal enhancement quantification in breast MRI screening.

6.A Comparison of Image Denoising Methods

Authors:Zhaoming Kong, Fangxi Deng, Haomin Zhuang, Xiaowei Yang, Jun Yu, Lifang He

Abstract: The advancement of imaging devices and countless images generated everyday pose an increasingly high demand on image denoising, which still remains a challenging task in terms of both effectiveness and efficiency. To improve denoising quality, numerous denoising techniques and approaches have been proposed in the past decades, including different transforms, regularization terms, algebraic representations and especially advanced deep neural network (DNN) architectures. Despite their sophistication, many methods may fail to achieve desirable results for simultaneous noise removal and fine detail preservation. In this paper, to investigate the applicability of existing denoising techniques, we compare a variety of denoising methods on both synthetic and real-world datasets for different applications. We also introduce a new dataset for benchmarking, and the evaluations are performed from four different perspectives including quantitative metrics, visual effects, human ratings and computational cost. Our experiments demonstrate: (i) the effectiveness and efficiency of representative traditional denoisers for various denoising tasks, (ii) a simple matrix-based algorithm may be able to produce similar results compared with its tensor counterparts, and (iii) the notable achievements of DNN models, which exhibit impressive generalization ability and show state-of-the-art performance on various datasets. In spite of the progress in recent years, we discuss shortcomings and possible extensions of existing techniques. Datasets, code and results are made publicly available and will be continuously updated at https://github.com/ZhaomingKong/Denoising-Comparison.

7.Performance of GAN-based augmentation for deep learning COVID-19 image classification

Authors:Oleksandr Fedoruk, Konrad Klimaszewski, Aleksander Ogonowski, Rafał Możdżonek

Abstract: The biggest challenge in the application of deep learning to the medical domain is the availability of training data. Data augmentation is a typical methodology used in machine learning when confronted with a limited data set. In a classical approach image transformations i.e. rotations, cropping and brightness changes are used. In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set. After assessing the quality of generated images they are used to increase the training data set improving its balance between classes. We consider the multi-class classification problem of chest X-ray images including the COVID-19 positive class that hasn't been yet thoroughly explored in the literature. Results of transfer learning-based classification of COVID-19 chest X-ray images are presented. The performance of several deep convolutional neural network models is compared. The impact on the detection performance of classical image augmentations i.e. rotations, cropping, and brightness changes are studied. Furthermore, classical image augmentation is compared with GAN-based augmentation. The most accurate model is an EfficientNet-B0 with an accuracy of 90.2 percent, trained on a dataset with a simple class balancing. The GAN augmentation approach is found to be subpar to classical methods for the considered dataset.

8.Detection and Classification of Glioblastoma Brain Tumor

Authors:Utkarsh Maurya, Appisetty Krishna Kalyan, Swapnil Bohidar, Dr. S. Sivakumar

Abstract: Glioblastoma brain tumors are highly malignant and often require early detection and accurate segmentation for effective treatment. We are proposing two deep learning models in this paper, namely UNet and Deeplabv3, for the detection and segmentation of glioblastoma brain tumors using preprocessed brain MRI images. The performance evaluation is done for these models in terms of accuracy and computational efficiency. Our experimental results demonstrate that both UNet and Deeplabv3 models achieve accurate detection and segmentation of glioblastoma brain tumors. However, Deeplabv3 outperforms UNet in terms of accuracy, albeit at the cost of requiring more computational resources. Our proposed models offer a promising approach for the early detection and segmentation of glioblastoma brain tumors, which can aid in effective treatment strategies. Further research can focus on optimizing the computational efficiency of the Deeplabv3 model while maintaining its high accuracy for real-world clinical applications. Overall, our approach works and contributes to the field of medical image analysis and deep learning-based approaches for brain tumor detection and segmentation. Our suggested models can have a major influence on the prognosis and treatment of people with glioblastoma, a fatal form of brain cancer. It is necessary to conduct more research to examine the practical use of these models in real-life healthcare settings.

9.Structure Preserving Cycle-GAN for Unsupervised Medical Image Domain Adaptation

Authors:Paolo Iacono, Naimul Khan

Abstract: The presence of domain shift in medical imaging is a common issue, which can greatly impact the performance of segmentation models when dealing with unseen image domains. Adversarial-based deep learning models, such as Cycle-GAN, have become a common model for approaching unsupervised domain adaptation of medical images. These models however, have no ability to enforce the preservation of structures of interest when translating medical scans, which can lead to potentially poor results for unsupervised domain adaptation within the context of segmentation. This work introduces the Structure Preserving Cycle-GAN (SP Cycle-GAN), which promotes medical structure preservation during image translation through the enforcement of a segmentation loss term in the overall Cycle-GAN training process. We demonstrate the structure preserving capability of the SP Cycle-GAN both visually and through comparison of Dice score segmentation performance for the unsupervised domain adaptation models. The SP Cycle-GAN is able to outperform baseline approaches and standard Cycle-GAN domain adaptation for binary blood vessel segmentation in the STARE and DRIVE datasets, and multi-class Left Ventricle and Myocardium segmentation in the multi-modal MM-WHS dataset. SP Cycle-GAN achieved a state of the art Myocardium segmentation Dice score (DSC) of 0.7435 for the MR to CT MM-WHS domain adaptation problem, and excelled in nearly all categories for the MM-WHS dataset. SP Cycle-GAN also demonstrated a strong ability to preserve blood vessel structure in the DRIVE to STARE domain adaptation problem, achieving a 4% DSC increase over a default Cycle-GAN implementation.