arXiv daily

Image and Video Processing (eess.IV)

Tue, 29 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Using deep learning for an automatic detection and classification of the vascular bifurcations along the Circle of Willis

Authors:Rafic Nader LTeN, Romain Bourcier LTeN, Florent Autrusseau LTeN

Abstract: Most of the intracranial aneurysms (ICA) occur on a specific portion of the cerebral vascular tree named the Circle of Willis (CoW). More particularly, they mainly arise onto fifteen of the major arterial bifurcations constituting this circular structure. Hence, for an efficient and timely diagnosis it is critical to develop some methods being able to accurately recognize each Bifurcation of Interest (BoI). Indeed, an automatic extraction of the bifurcations presenting the higher risk of developing an ICA would offer the neuroradiologists a quick glance at the most alarming areas. Due to the recent efforts on Artificial Intelligence, Deep Learning turned out to be the best performing technology for many pattern recognition tasks. Moreover, various methods have been particularly designed for medical image analysis purposes. This study intends to assist the neuroradiologists to promptly locate any bifurcation presenting a high risk of ICA occurrence. It can be seen as a Computer Aided Diagnosis scheme, where the Artificial Intelligence facilitates the access to the regions of interest within the MRI. In this work, we propose a method for a fully automatic detection and recognition of the bifurcations of interest forming the Circle of Willis. Several neural networks architectures have been tested, and we thoroughly evaluate the bifurcation recognition rate.

2.Uncertainty Aware Training to Improve Deep Learning Model Calibration for Classification of Cardiac MR Images

Authors:Tareen Dawood, Chen Chen, Baldeep S. Sidhua, Bram Ruijsink, Justin Goulda, Bradley Porter, Mark K. Elliott, Vishal Mehta, Christopher A. Rinaldi, Esther Puyol-Anton, Reza Razavi, Andrew P. King

Abstract: Quantifying uncertainty of predictions has been identified as one way to develop more trustworthy artificial intelligence (AI) models beyond conventional reporting of performance metrics. When considering their role in a clinical decision support setting, AI classification models should ideally avoid confident wrong predictions and maximise the confidence of correct predictions. Models that do this are said to be well-calibrated with regard to confidence. However, relatively little attention has been paid to how to improve calibration when training these models, i.e., to make the training strategy uncertainty-aware. In this work we evaluate three novel uncertainty-aware training strategies comparing against two state-of-the-art approaches. We analyse performance on two different clinical applications: cardiac resynchronisation therapy (CRT) response prediction and coronary artery disease (CAD) diagnosis from cardiac magnetic resonance (CMR) images. The best-performing model in terms of both classification accuracy and the most common calibration measure, expected calibration error (ECE) was the Confidence Weight method, a novel approach that weights the loss of samples to explicitly penalise confident incorrect predictions. The method reduced the ECE by 17% for CRT response prediction and by 22% for CAD diagnosis when compared to a baseline classifier in which no uncertainty-aware strategy was included. In both applications, as well as reducing the ECE there was a slight increase in accuracy from 69% to 70% and 70% to 72% for CRT response prediction and CAD diagnosis respectively. However, our analysis showed a lack of consistency in terms of optimal models when using different calibration measures. This indicates the need for careful consideration of performance metrics when training and selecting models for complex high-risk applications in healthcare.

3.TKwinFormer: Top k Window Attention in Vision Transformers for Feature Matching

Authors:Yun Liao, Yide Di, Hao Zhou, Kaijun Zhu, Mingyu Lu, Yijia Zhang, Qing Duan, Junhui Liu

Abstract: Local feature matching remains a challenging task, primarily due to difficulties in matching sparse keypoints and low-texture regions. The key to solving this problem lies in effectively and accurately integrating global and local information. To achieve this goal, we introduce an innovative local feature matching method called TKwinFormer. Our approach employs a multi-stage matching strategy to optimize the efficiency of information interaction. Furthermore, we propose a novel attention mechanism called Top K Window Attention, which facilitates global information interaction through window tokens prior to patch-level matching, resulting in improved matching accuracy. Additionally, we design an attention block to enhance attention between channels. Experimental results demonstrate that TKwinFormer outperforms state-of-the-art methods on various benchmarks. Code is available at: https://github.com/LiaoYun0x0/TKwinFormer.

4.Is visual explanation with Grad-CAM more reliable for deeper neural networks? a case study with automatic pneumothorax diagnosis

Authors:Zirui Qiu, Hassan Rivaz, Yiming Xiao

Abstract: While deep learning techniques have provided the state-of-the-art performance in various clinical tasks, explainability regarding their decision-making process can greatly enhance the credence of these methods for safer and quicker clinical adoption. With high flexibility, Gradient-weighted Class Activation Mapping (Grad-CAM) has been widely adopted to offer intuitive visual interpretation of various deep learning models' reasoning processes in computer-assisted diagnosis. However, despite the popularity of the technique, there is still a lack of systematic study on Grad-CAM's performance on different deep learning architectures. In this study, we investigate its robustness and effectiveness across different popular deep learning models, with a focus on the impact of the networks' depths and architecture types, by using a case study of automatic pneumothorax diagnosis in X-ray scans. Our results show that deeper neural networks do not necessarily contribute to a strong improvement of pneumothorax diagnosis accuracy, and the effectiveness of GradCAM also varies among different network architectures.

5.Shape-Margin Knowledge Augmented Network for Thyroid Nodule Segmentation and Diagnosis

Authors:Weihua Liu, Chaochao Lin

Abstract: Thyroid nodule segmentation is a crucial step in the diagnostic procedure of physicians and computer-aided diagnosis systems. Mostly, current studies treat segmentation and diagnosis as independent tasks without considering the correlation between these tasks. The sequence steps of these independent tasks in computer-aided diagnosis systems may lead to the accumulation of errors. Therefore, it is worth combining them as a whole through exploring the relationship between thyroid nodule segmentation and diagnosis. According to the thyroid imaging reporting and data system (TI-RADS), the assessment of shape and margin characteristics is the prerequisite for the discrimination of benign and malignant thyroid nodules. These characteristics can be observed in the thyroid nodule segmentation masks. Inspired by the diagnostic procedure of TI-RADS, this paper proposes a shape-margin knowledge augmented network (SkaNet) for simultaneously thyroid nodule segmentation and diagnosis. Due to the similarity in visual features between segmentation and diagnosis, SkaNet shares visual features in the feature extraction stage and then utilizes a dual-branch architecture to perform thyroid nodule segmentation and diagnosis tasks simultaneously. To enhance effective discriminative features, an exponential mixture module is devised, which incorporates convolutional feature maps and self-attention maps by exponential weighting. Then, SkaNet is jointly optimized by a knowledge augmented multi-task loss function with a constraint penalty term. It embeds shape and margin characteristics through numerical computation and models the relationship between the thyroid nodule diagnosis results and segmentation masks.