arXiv daily

Image and Video Processing (eess.IV)

Fri, 28 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.MLIC++: Linear Complexity Multi-Reference Entropy Modeling for Learned Image Compression

Authors:Wei Jiang, Ronggang Wang

Abstract: Recently, multi-reference entropy model has been proposed, which captures channel-wise, local spatial, and global spatial correlations. Previous works adopt attention for global correlation capturing, however, the quadratic cpmplexity limits the potential of high-resolution image coding. In this paper, we propose the linear complexity global correlations capturing, via the decomposition of softmax operation. Based on it, we propose the MLIC$^{++}$, a learned image compression with linear complexity for multi-reference entropy modeling. Our MLIC$^{++}$ is more efficient and it reduces BD-rate by 12.44% on the Kodak dataset compared to VTM-17.0 when measured in PSNR. Code will be available at https://github.com/JiangWeibeta/MLIC.

2.RAWIW: RAW Image Watermarking Robust to ISP Pipeline

Authors:Kang Fu, Xiaohong Liu, Jun Jia, Zicheng Zhang, Yicong Peng, Jia Wang, Guangtao Zhai

Abstract: Invisible image watermarking is essential for image copyright protection. Compared to RGB images, RAW format images use a higher dynamic range to capture the radiometric characteristics of the camera sensor, providing greater flexibility in post-processing and retouching. Similar to the master recording in the music industry, RAW images are considered the original format for distribution and image production, thus requiring copyright protection. Existing watermarking methods typically target RGB images, leaving a gap for RAW images. To address this issue, we propose the first deep learning-based RAW Image Watermarking (RAWIW) framework for copyright protection. Unlike RGB image watermarking, our method achieves cross-domain copyright protection. We directly embed copyright information into RAW images, which can be later extracted from the corresponding RGB images generated by different post-processing methods. To achieve end-to-end training of the framework, we integrate a neural network that simulates the ISP pipeline to handle the RAW-to-RGB conversion process. To further validate the generalization of our framework to traditional ISP pipelines and its robustness to transmission distortion, we adopt a distortion network. This network simulates various types of noises introduced during the traditional ISP pipeline and transmission. Furthermore, we employ a three-stage training strategy to strike a balance between robustness and concealment of watermarking. Our extensive experiments demonstrate that RAWIW successfully achieves cross-domain copyright protection for RAW images while maintaining their visual quality and robustness to ISP pipeline distortions.

3.ERCPMP: An Endoscopic Image and Video Dataset for Colorectal Polyps Morphology and Pathology

Authors:Mojgan Forootan, Mohsen Rajabnia, Ahmad R Mafi, Hamed Azhdari Tehrani, Erfan Ghadirzadeh, Mahziar Setayeshfar, Zahra Ghaffari, Mohammad Tashakoripour, Mohammad Reza Zali, Hamidreza Bolhasani

Abstract: In the recent years, artificial intelligence (AI) and its leading subtypes, machine learning (ML) and deep learning (DL) and their applications are spreading very fast in various aspects such as medicine. Today the most important challenge of developing accurate algorithms for medical prediction, detection, diagnosis, treatment and prognosis is data. ERCPMP is an Endoscopic Image and Video Dataset for Recognition of Colorectal Polyps Morphology and Pathology. This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification. Pathological data includes the diagnosis of the polyps including Tubular, Villous, Tubulovillous, Hyperplastic, Serrated, Inflammatory and Adenocarcinoma with Dysplasia Grade & Differentiation. The current version of this dataset is published and available on Elsevier Mendeley Dataverse and since it is under development, the latest version is accessible via: https://databiox.com.

4.Defocus Blur Synthesis and Deblurring via Interpolation and Extrapolation in Latent Space

Authors:Ioana Mazilu, Shunxin Wang, Sven Dummer, Raymond Veldhuis, Christoph Brune, Nicola Strisciuglio

Abstract: Though modern microscopes have an autofocusing system to ensure optimal focus, out-of-focus images can still occur when cells within the medium are not all in the same focal plane, affecting the image quality for medical diagnosis and analysis of diseases. We propose a method that can deblur images as well as synthesize defocus blur. We train autoencoders with implicit and explicit regularization techniques to enforce linearity relations among the representations of different blur levels in the latent space. This allows for the exploration of different blur levels of an object by linearly interpolating/extrapolating the latent representations of images taken at different focal planes. Compared to existing works, we use a simple architecture to synthesize images with flexible blur levels, leveraging the linear latent space. Our regularized autoencoders can effectively mimic blur and deblur, increasing data variety as a data augmentation technique and improving the quality of microscopic images, which would be beneficial for further processing and analysis.

5.A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond

Authors:Junyu Chen, Yihao Liu, Shuwen Wei, Zhangxing Bian, Shalini Subramanian, Aaron Carass, Jerry L. Prince, Yong Du

Abstract: Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration.

6.TriadNet: Sampling-free predictive intervals for lesional volume in 3D brain MR images

Authors:Benjamin Lambert, Florence Forbes, Senan Doyle, Michel Dojat

Abstract: The volume of a brain lesion (e.g. infarct or tumor) is a powerful indicator of patient prognosis and can be used to guide the therapeutic strategy. Lesional volume estimation is usually performed by segmentation with deep convolutional neural networks (CNN), currently the state-of-the-art approach. However, to date, few work has been done to equip volume segmentation tools with adequate quantitative predictive intervals, which can hinder their usefulness and acceptation in clinical practice. In this work, we propose TriadNet, a segmentation approach relying on a multi-head CNN architecture, which provides both the lesion volumes and the associated predictive intervals simultaneously, in less than a second. We demonstrate its superiority over other solutions on BraTS 2021, a large-scale MRI glioblastoma image database.

7.Scale-aware Test-time Click Adaptation for Pulmonary Nodule and Mass Segmentation

Authors:Zhihao Li, Jiancheng Yang, Yongchao Xu, Li Zhang, Wenhui Dong, Bo Du

Abstract: Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesions of nodule and mass is still challenging. In this paper, we propose a multi-scale neural network with scale-aware test-time adaptation to address this challenge. Specifically, we introduce an adaptive Scale-aware Test-time Click Adaptation method based on effortlessly obtainable lesion clicks as test-time cues to enhance segmentation performance, particularly for large lesions. The proposed method can be seamlessly integrated into existing networks. Extensive experiments on both open-source and in-house datasets consistently demonstrate the effectiveness of the proposed method over some CNN and Transformer-based segmentation methods. Our code is available at https://github.com/SplinterLi/SaTTCA