arXiv daily

Image and Video Processing (eess.IV)

Fri, 21 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation

Authors:Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina

Abstract: Medical image segmentation is a challenging task, particularly due to inter- and intra-observer variability, even between medical experts. In this paper, we propose a novel model, called Probabilistic Inter-Observer and iNtra-Observer variation NetwOrk (Pionono). It captures the labeling behavior of each rater with a multidimensional probability distribution and integrates this information with the feature maps of the image to produce probabilistic segmentation predictions. The model is optimized by variational inference and can be trained end-to-end. It outperforms state-of-the-art models such as STAPLE, Probabilistic U-Net, and models based on confusion matrices. Additionally, Pionono predicts multiple coherent segmentation maps that mimic the rater's expert opinion, which provides additional valuable information for the diagnostic process. Experiments on real-world cancer segmentation datasets demonstrate the high accuracy and efficiency of Pionono, making it a powerful tool for medical image analysis.

2.Bone mineral density estimation from a plain X-ray image by learning decomposition into projections of bone-segmented computed tomography

Authors:Yi Gu, Yoshito Otake, Keisuke Uemura, Mazen Soufi, Masaki Takao, Hugues Talbot, Seiji Okada, Nobuhiko Sugano, Yoshinobu Sato

Abstract: Osteoporosis is a prevalent bone disease that causes fractures in fragile bones, leading to a decline in daily living activities. Dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) are highly accurate for diagnosing osteoporosis; however, these modalities require special equipment and scan protocols. To frequently monitor bone health, low-cost, low-dose, and ubiquitously available diagnostic methods are highly anticipated. In this study, we aim to perform bone mineral density (BMD) estimation from a plain X-ray image for opportunistic screening, which is potentially useful for early diagnosis. Existing methods have used multi-stage approaches consisting of extraction of the region of interest and simple regression to estimate BMD, which require a large amount of training data. Therefore, we propose an efficient method that learns decomposition into projections of bone-segmented QCT for BMD estimation under limited datasets. The proposed method achieved high accuracy in BMD estimation, where Pearson correlation coefficients of 0.880 and 0.920 were observed for DXA-measured BMD and QCT-measured BMD estimation tasks, respectively, and the root mean square of the coefficient of variation values were 3.27 to 3.79% for four measurements with different poses. Furthermore, we conducted extensive validation experiments, including multi-pose, uncalibrated-CT, and compression experiments toward actual application in routine clinical practice.

3.UWAT-GAN: Fundus Fluorescein Angiography Synthesis via Ultra-wide-angle Transformation Multi-scale GAN

Authors:Zhaojie Fang, Zhanghao Chen, Pengxue Wei, Wangting Li, Shaochong Zhang, Ahmed Elazab, Gangyong Jia, Ruiquan Ge, Changmiao Wang

Abstract: Fundus photography is an essential examination for clinical and differential diagnosis of fundus diseases. Recently, Ultra-Wide-angle Fundus (UWF) techniques, UWF Fluorescein Angiography (UWF-FA) and UWF Scanning Laser Ophthalmoscopy (UWF-SLO) have been gradually put into use. However, Fluorescein Angiography (FA) and UWF-FA require injecting sodium fluorescein which may have detrimental influences. To avoid negative impacts, cross-modality medical image generation algorithms have been proposed. Nevertheless, current methods in fundus imaging could not produce high-resolution images and are unable to capture tiny vascular lesion areas. This paper proposes a novel conditional generative adversarial network (UWAT-GAN) to synthesize UWF-FA from UWF-SLO. Using multi-scale generators and a fusion module patch to better extract global and local information, our model can generate high-resolution images. Moreover, an attention transmit module is proposed to help the decoder learn effectively. Besides, a supervised approach is used to train the network using multiple new weighted losses on different scales of data. Experiments on an in-house UWF image dataset demonstrate the superiority of the UWAT-GAN over the state-of-the-art methods. The source code is available at: https://github.com/Tinysqua/UWAT-GAN.

4.FedAutoMRI: Federated Neural Architecture Search for MR Image Reconstruction

Authors:Ruoyou Wu, Cheng Li, Juan Zou, Shanshan Wang

Abstract: Centralized training methods have shown promising results in MR image reconstruction, but privacy concerns arise when gathering data from multiple institutions. Federated learning, a distributed collaborative training scheme, can utilize multi-center data without the need to transfer data between institutions. However, existing federated learning MR image reconstruction methods rely on manually designed models which have extensive parameters and suffer from performance degradation when facing heterogeneous data distributions. To this end, this paper proposes a novel FederAted neUral archiTecture search approach fOr MR Image reconstruction (FedAutoMRI). The proposed method utilizes differentiable architecture search to automatically find the optimal network architecture. In addition, an exponential moving average method is introduced to improve the robustness of the client model to address the data heterogeneity issue. To the best of our knowledge, this is the first work to use federated neural architecture search for MR image reconstruction. Experimental results demonstrate that our proposed FedAutoMRI can achieve promising performances while utilizing a lightweight model with only a small number of model parameters compared to the classical federated learning methods.

5.CortexMorph: fast cortical thickness estimation via diffeomorphic registration using VoxelMorph

Authors:Richard McKinley, Christian Rummel

Abstract: The thickness of the cortical band is linked to various neurological and psychiatric conditions, and is often estimated through surface-based methods such as Freesurfer in MRI studies. The DiReCT method, which calculates cortical thickness using a diffeomorphic deformation of the gray-white matter interface towards the pial surface, offers an alternative to surface-based methods. Recent studies using a synthetic cortical thickness phantom have demonstrated that the combination of DiReCT and deep-learning-based segmentation is more sensitive to subvoxel cortical thinning than Freesurfer. While anatomical segmentation of a T1-weighted image now takes seconds, existing implementations of DiReCT rely on iterative image registration methods which can take up to an hour per volume. On the other hand, learning-based deformable image registration methods like VoxelMorph have been shown to be faster than classical methods while improving registration accuracy. This paper proposes CortexMorph, a new method that employs unsupervised deep learning to directly regress the deformation field needed for DiReCT. By combining CortexMorph with a deep-learning-based segmentation model, it is possible to estimate region-wise thickness in seconds from a T1-weighted image, while maintaining the ability to detect cortical atrophy. We validate this claim on the OASIS-3 dataset and the synthetic cortical thickness phantom of Rusak et al.

6.Cascaded multitask U-Net using topological loss for vessel segmentation and centerline extraction

Authors:Pierre Rougé, Nicolas Passat, Odyssée Merveille

Abstract: Vessel segmentation and centerline extraction are two crucial preliminary tasks for many computer-aided diagnosis tools dealing with vascular diseases. Recently, deep-learning based methods have been widely applied to these tasks. However, classic deep-learning approaches struggle to capture the complex geometry and specific topology of vascular networks, which is of the utmost importance in most applications. To overcome these limitations, the clDice loss, a topological loss that focuses on the vessel centerlines, has been recently proposed. This loss requires computing, with a proposed soft-skeleton algorithm, the skeletons of both the ground truth and the predicted segmentation. However, the soft-skeleton algorithm provides suboptimal results on 3D images, which makes the clDice hardly suitable on 3D images. In this paper, we propose to replace the soft-skeleton algorithm by a U-Net which computes the vascular skeleton directly from the segmentation. We show that our method provides more accurate skeletons than the soft-skeleton algorithm. We then build upon this network a cascaded U-Net trained with the clDice loss to embed topological constraints during the segmentation. The resulting model is able to predict both the vessel segmentation and centerlines with a more accurate topology.

7.Computational Image Formation

Authors:Stanley H. Chan

Abstract: At the pinnacle of computational imaging is the co-optimization of camera and algorithm. This, however, is not the only form of computational imaging. In problems such as imaging through adverse weather, the bigger challenge is how to accurately simulate the forward degradation process so that we can synthesize data to train reconstruction models and/or integrating the forward model as part of the reconstruction algorithm. This article introduces the concept of computational image formation (CIF). Compared to the standard inverse problems where the goal is to recover the latent image $\mathbf{x}$ from the observation $\mathbf{y} = \mathcal{G}(\mathbf{x})$, CIF shifts the focus to designing an approximate mapping $\mathcal{H}_{\theta}$ such that $\mathcal{H}_{\theta} \approx \mathcal{G}$ while giving a better image reconstruction result. The word ``computational'' highlights the fact that the image formation is now replaced by a numerical simulator. While matching nature remains an important goal, CIF pays even greater attention on strategically choosing an $\mathcal{H}_{\theta}$ so that the reconstruction performance is maximized. The goal of this article is to conceptualize the idea of CIF by elaborating on its meaning and implications. The first part of the article is a discussion on the four attributes of a CIF simulator: accurate enough to mimic $\mathcal{G}$, fast enough to be integrated as part of the reconstruction, providing a well-posed inverse problem when plugged into the reconstruction, and differentiable in the backpropagation sense. The second part of the article is a detailed case study based on imaging through atmospheric turbulence. The third part of the article is a collection of other examples that fall into the category of CIF. Finally, thoughts about the future direction and recommendations to the community are shared.

8.Deep Learning Hyperspectral Pansharpening on large scale PRISMA dataset

Authors:Simone Zini, Mirko Paolo Barbato, Flavio Piccoli, Paolo Napoletano

Abstract: In this work, we assess several deep learning strategies for hyperspectral pansharpening. First, we present a new dataset with a greater extent than any other in the state of the art. This dataset, collected using the ASI PRISMA satellite, covers about 262200 km2, and its heterogeneity is granted by randomly sampling the Earth's soil. Second, we adapted several state of the art approaches based on deep learning to fit PRISMA hyperspectral data and then assessed, quantitatively and qualitatively, the performance in this new scenario. The investigation has included two settings: Reduced Resolution (RR) to evaluate the techniques in a supervised environment and Full Resolution (FR) for a real-world evaluation. The main purpose is the evaluation of the reconstruction fidelity of the considered methods. In both scenarios, for the sake of completeness, we also included machine-learning-free approaches. From this extensive analysis has emerged that data-driven neural network methods outperform machine-learning-free approaches and adapt better to the task of hyperspectral pansharpening, both in RR and FR protocols.