arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Wed, 13 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Atmospheric retrievals with petitRADTRANS

Authors:Evert Nasedkin, Paul Mollière, Doriann Blain

Abstract: petitRADTRANS (pRT) is a fast radiative transfer code used for computing emission and transmission spectra of exoplanet atmospheres, combining a FORTRAN back end with a Python based user interface. It is widely used in the exoplanet community with 161 references in the literature to date, and has been benchmarked against numerous similar tools. The spectra calculated with pRT can be used as a forward model for fitting spectroscopic data using Monte Carlo techniques, commonly referred to as an atmospheric retrieval. The new retrieval module combines fast forward modelling with nested sampling codes, allowing for atmospheric retrievals on a large range of different types of exoplanet data. Thus it is now possible to use pRT to easily and quickly infer the atmospheric properties of exoplanets in both transmission and thermal emission.

2.The dynamical evolution of protoplanetary disks and planets in dense star clusters

Authors:Francesco Flammini Dotti, Roberto Capuzzo-Dolcetta, M. B. N. Kouwenhoven

Abstract: Most stars are born in dense stellar environments where the formation and early evolution of planetary systems may be significantly perturbed by encounters with neighbouring stars. To investigate on the fate of circumstellar gas disks and planets around young stars dense stellar environments, we numerically evolve star-disk-planet systems. We use the $N$-body codes NBODY6++GPU and SnIPES for the dynamical evolution of the stellar population, and the SPH-based code GaSPH for the dynamical evolution of protoplanetary disks. The secular evolution of a planetary system in a cluster differs from that of a field star. Most stellar encounters are tidal, adiabatic and nearly-parabolic. The parameters that characterize the impact of an encounter include the orientation of the protoplanetary disk and planet relative to the orbit of the encountering star, and the orbital phase and the semi-major axis of the planet. We investigate this dependence for close encounters ($r_p/a\leq 100$, where $r_p$ is the periastron distance of the encountering star and $a$ is the semi-major axis of the planet). We also investigate distant perturbers ($r_p/a\gg 100$), which have a moderate effect on the dynamical evolution of the planet and the protoplanetary disk. We find that the evolution of protoplanetary disks in star clusters differs significantly from that of isolated systems. When interpreting the outcome of the planet formation process, it is thus important to consider their birth environments.

3.Detecting molecules in Ariel low resolution transmission spectra

Authors:Andrea Bocchieri, Lorenzo V. Mugnai, Enzo Pascale, Quentin Changeat, Giovanna Tinetti

Abstract: The Ariel Space Mission aims to observe a diverse sample of exoplanet atmospheres across a wide wavelength range of 0.5 to 7.8 microns. The observations are organized into four Tiers, with Tier 1 being a reconnaissance survey. This Tier is designed to achieve a sufficient signal-to-noise ratio (S/N) at low spectral resolution in order to identify featureless spectra or detect key molecular species without necessarily constraining their abundances with high confidence. We introduce a P-statistic that uses the abundance posteriors from a spectral retrieval to infer the probability of a molecule's presence in a given planet's atmosphere in Tier 1. We find that this method predicts probabilities that correlate well with the input abundances, indicating considerable predictive power when retrieval models have comparable or higher complexity compared to the data. However, we also demonstrate that the P-statistic loses representativity when the retrieval model has lower complexity, expressed as the inclusion of fewer than the expected molecules. The reliability and predictive power of the P-statistic are assessed on a simulated population of exoplanets with H2-He dominated atmospheres, and forecasting biases are studied and found not to adversely affect the classification of the survey.

4.Self-gravity of debris discs can strongly change the outcomes of interactions with inclined planets

Authors:Pedro P. Poblete, Torsten Löhne, Tim D. Pearce, Antranik A. Sefilian

Abstract: Drastic changes in protoplanets' orbits could occur in the early stages of planetary systems through interactions with other planets and their surrounding protoplanetary or debris discs. The resulting planetary system could exhibit orbits with moderate to high eccentricities and/or inclinations, causing planets to perturb one another as well as the disc significantly. The present work studies the evolution of systems composed of an initially inclined planet and a debris disc. We perform N-body simulations of a narrow, self-gravitating debris disc and a single interior Neptune-like planet. We simulate systems with various initial planetary inclinations, from coplanar to polar configurations considering different separations between the planet and the disc. We find that except when the planet is initially on a polar orbit, the planet-disc system tends to reach a quasi-coplanar configuration with low vertical dispersion in the disc. When present, the Zeipel--Kozai--Lidov oscillations induced by the disc pump the planet's eccentricity and, in turn, affect the disc structure. We also find that the resulting disc morphology in most of the simulations looks very similar in both radial and vertical directions once the simulations are converged. This contrasts strongly with massless disc simulations, where vertical disc dispersion is set by the initial disc-planet inclination and can be high for initially highly inclined planets. The results suggest caution in interpreting an unseen planet's dynamical history based only on the disc's appearance.

5.Physical Properties of the Young Asteroid Pair 2010 UM26 and 2010 RN221

Authors:David Jewitt, Yonyoung Kim, Jing Li, Max Mutchler

Abstract: The main belt asteroids 458271 (2010 UM26) and 2010 RN221 share almost identical orbital elements and currently appear as comoving objects 30 arcsec apart in the plane of the sky. They are products of the breakup of a parent object, or the splitting of a binary, with a separation age measured in decades rather than thousands or millions of years as for most other asteroid pairs (Vokrouhlicky et al.~2022). The nature of the precursor body and the details of the breakup and separation of the components are unknown. We obtained deep, high resolution imaging using the Hubble Space Telescope to characterize the pair and to search for material in addition to the main components that might have been released upon breakup. The primary and secondary have absolute magnitudes $H$ = 17.98 and 19.69, respectively, and effective diameters 760 m and 350 m (assuming geometric albedo 0.20). The secondary/primary mass ratio is 0.1, assuming equal densities. Time-series photometry shows that the primary rotates with period 5.9 hour and has a small photometric range (0.15 magnitudes), while the period of the secondary is undetermined (but >20 hours) and its lightcurve range is at least 1 magnitude. The primary rotation period and component mass ratio are consistent with a simple model for the breakup of a rotationally unstable precursor. However, unlike other observationally supported instances of asteroid breakup, neither macroscopic fragments nor unresolved material are found remaining in the vicinity of this asteroid pair. We suggest that the pair is a recently dissociated binary, itself formed earlier by rotational instability of 2010 UM26.

6.JWST imaging of edge-on protoplanetary disks. I. Fully vertically mixed 10$μ$m grains in the outer regions of a 1000 au disk

Authors:G. Duchene, F. Menard, K. Stapelfeldt, M. Villenave, S. G. Wolff, M. D. Perrin, C. Pinte, R. Tazaki, D. L. Padgett

Abstract: Scattered light imaging of protoplanetary disks provides key insights on the geometry and dust properties in the disk surface. Here we present JWST 2--21\,$\mu$m images of a 1000\,au-radius edge-on protoplanetary disk surrounding an 0.4\,$M_\odot$ young star in Taurus, 2MASS\,J04202144+2813491. These observations represent the longest wavelengths at which a protoplanetary disk is spatially resolved in scattered light. We combine these observations with HST optical images and ALMA continuum and CO mapping. We find that the changes in the scattered light disk morphology are remarkably small across a factor of 30 in wavelength, indicating that dust in the disk surface layers is characterized by an almost gray opacity law. Using radiative transfer models, we conclude that grains up to $\gtrsim10\,\mu$m in size are fully coupled to the gas in this system, whereas grains $\gtrsim100\,\mu$m are strongly settled towards the midplane. Further analyses of these observations, and similar ones of other edge-on disks, will provide strong empirical constraints on disk dynamics and evolution and grain growth models. In addition, the 7.7 and 12.\,$\mu$m JWST images reveal an X-shaped feature located above the warm molecular layer traced by CO line emission. The highest elevations at which this feature is detectable roughly match the maximal extent of the disk in visible wavelength scattered light as well as of an unusual kinematic signature in CO. We propose that these phenomena could be related to a disk wind entraining small dust grains.

7.The impact of lake shape and size on lake breezes and air-lake exchanges on Titan

Authors:Audrey Chatain, Scot C. R. Rafkin, Alejandro Soto, Enora Moisan, Juan M. Lora, Alice Le Gall, Ricardo Hueso, Aymeric Spiga

Abstract: Titan, the largest moon of Saturn, has many lakes on its surface, formed mainly of liquid methane. Like water lakes on Earth, these methane lakes on Titan likely profoundly affect the local climate. Previous studies (Rafkin and Soto 2020, Chatain et al 2022) showed that Titan's lakes create lake breeze circulations with characteristic dimensions similar to the ones observed on Earth. However, such studies used a model in two dimensions; this work investigates the consequences of the addition of a third dimension to the model. Our results show that 2D simulations tend to overestimate the extension of the lake breeze over the land, and underestimate the strength of the subsidence over the lake, due to divergence/convergence geometrical effects in the mass conservation equations. In addition, 3D simulations including a large scale background wind show the formation of a pocket of accelerated wind behind the lake, which did not form in 2D simulations. An investigation of the effect of shoreline concavity on the resulting air circulation shows the formation of wind currents over peninsulas. Simulations with several lakes can either result in the formation of several individual lake breeze cells (during the day), or the emergence of a large merged cell with internal wind currents between lakes (during the night). Simulations of several real-shaped lakes located at a latitude of 74{\deg}N on Titan at the spring equinox show that larger lakes trigger stronger winds, and that some sections of lakes might accumulate enough methane vapor to form a thin fog. The addition of a third dimension, along with adjustments in the parametrizations of turbulence and subsurface land temperature, results in a reduction in the magnitude of the average lake evaporate rate, namely to ~6 cm/Earth year.

8.Atmospheric Reconnaissance of TRAPPIST-1 b with JWST/NIRISS: Evidence for Strong Stellar Contamination in the Transmission Spectra

Authors:Olivia Lim, Björn Benneke, René Doyon, Ryan J. MacDonald, Caroline Piaulet, Étienne Artigau, Louis-Philippe Coulombe, Michael Radica, Alexandrine L'Heureux, Loïc Albert, Benjamin V. Rackham, Julien de Wit, Salma Salhi, Pierre-Alexis Roy, Laura Flagg, Marylou Fournier-Tondreau, Jake Taylor, Neil J. Cook, David Lafrenière, Nicolas B. Cowan, Lisa Kaltenegger, Jason F. Rowe, Néstor Espinoza, Lisa Dang, Antoine Darveau-Bernier

Abstract: TRAPPIST-1 is a nearby system of seven Earth-sized, temperate, rocky exoplanets transiting a Jupiter-sized M8.5V star, ideally suited for in-depth atmospheric studies. Each TRAPPIST-1 planet has been observed in transmission both from space and from the ground, confidently rejecting cloud-free, hydrogen-rich atmospheres. Secondary eclipse observations of TRAPPIST-1 b with JWST/MIRI are consistent with little to no atmosphere given the lack of heat redistribution. Here we present the first transmission spectra of TRAPPIST-1 b obtained with JWST/NIRISS over two visits. The two transmission spectra show moderate to strong evidence of contamination from unocculted stellar heterogeneities, which dominates the signal in both visits. The transmission spectrum of the first visit is consistent with unocculted starspots and the second visit exhibits signatures of unocculted faculae. Fitting the stellar contamination and planetary atmosphere either sequentially or simultaneously, we confirm the absence of cloud-free hydrogen-rich atmospheres, but cannot assess the presence of secondary atmospheres. We find that the uncertainties associated with the lack of stellar model fidelity are one order of magnitude above the observation precision of 89 ppm (combining the two visits). Without affecting the conclusion regarding the atmosphere of TRAPPIST-1 b, this highlights an important caveat for future explorations, which calls for additional observations to characterize stellar heterogeneities empirically and/or theoretical works to improve model fidelity for such cool stars. This need is all the more justified as stellar contamination can affect the search for atmospheres around the outer, cooler TRAPPIST-1 planets for which transmission spectroscopy is currently the most efficient technique.