arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Fri, 08 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Two mini-Neptunes Transiting the Adolescent K-star HIP 113103 Confirmed with TESS and CHEOPS

Authors:Nataliea Lowson, George Zhou, Chelsea X. Huang, Duncan J. Wright, Billy Edwards, Emma Nabbie, Alex Venner, Samuel N. Quinn, Karen A. Collins, Edward Gillen, Matthew Battley, Amaury Triaud, Coel Hellier, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Bill Wohler, Avi Shporer, Richard P. Schwarz, Felipe Murgas, Enric Pallé, David R. Anderson, Richard G. West, Robert A. Wittenmyer, Brendan P. Bowler, Jonathan Horner, Stephen R. Kane, John Kielkopf, Peter Plavchan, Hui Zhang, Tyler Fairnington, Jack Okumura, Matthew W. Mengel, Brett C. Addison

Abstract: We report the discovery of two mini-Neptunes in near 2:1 resonance orbits ($P=7.610303$ d for HIP 113103 b and $P=14.245651$ d for HIP 113103 c) around the adolescent K-star HIP 113103 (TIC 121490076). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a $\sim$17.5 hour observation for the transits of both planets using ESA CHEOPS. We place $\leq4.5$ min and $\leq2.5$ min limits on the absence of transit timing variations over the three year photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of $R_{p}=1.829^{+0.096}_{-0.067}\,R_{\oplus}$, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius $R_{p}=2.40^{+0.10}_{-0.08}\,R_{\oplus}$ for HIP 113103 c, and close proximity of both planets to HIP 113103, it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST, HST, and Twinkle. It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population.

2.Dynamics of trans-Neptunian objects near the 3/1 mean-motion resonance with Neptune

Authors:Alan J. Alves-Carmo, Timothée Vaillant, Alexandre C. M. Correia

Abstract: The complex classification of trans-Neptunian objects (TNOs) that are captured in mean-motion resonances (MMRs) and the constraint of their multiple origins are two significant open problems concerning the Solar System. The case-by-case study of the different MMRs and their characteristics provide information about their origin and dynamics, which helps us to understand the early stages of the Solar System evolution. In this paper, we study the dynamics of the detected TNOs close to a 3/1 MMR with Neptune. We initially use a semi-analytic three-body model to investigate the coplanar secular dynamics of these objects and find the stationary points. We then use surface sections and stability maps to analyse the non-averaged dynamics. These methods allow us to isolate the different stability regions and determine the extent of the chaotic regions. We show that stability maps are an extremely powerful tool for studying the resonant dynamics when they are computed in terms of the resonant angle. We then use these maps to study the non-planar three-body problem and the full dynamics in the presence of planetary perturbations. We confirm that TNOs near the 3/1 MMR regions can exist at very high inclinations. In the framework of the three-body problem, many of these objects can also be stable outside the 3/1 MMR owing to a Kozai secular resonance. However, when we take into account the perturbations of the four giant planets, the Kozai regions disappear and only the 3/1 MMR region remains, with eccentricities $e \lesssim 0.5$.

3.Study of Io's sodium jets with the TRAPPIST telescopes

Authors:Alexander de Becker University of Liège University of Hong Kong, Linus Head University of Liège, Bertrand Bonfond University of Liège, Emmanuël Jehin University of Liège, Jean Manfroid University of Liège, Zhonghua Yao Chinese Academy of Sciences, Binzheng Zhang University of Hong Kong, Denis Grodent University of Liège, Nicholas Schneider University of Colorado, Zouhair Benkhaldoun Oukaimeden Observatory

Abstract: Io is the most volcanically active body in the Solar System. This volcanic activity results in the ejection of material into Io's atmosphere, which may then escape from the atmosphere to form various structures in the jovian magnetosphere, including the plasma torus and clouds of neutral particles. The physical processes involved in the escape of particles - for example, how the volcanoes of Io provide material to the plasma torus - are not yet fully understood. In particular, it is not clear to what extent the sodium jet, one of the sodium neutral clouds related to Io, is a proxy of processes that populate the various reservoirs of plasma in Jupiter's magnetosphere. Here, we report on observations carried out over 17 nights in 2014-2015, 30 nights in 2021, and 23 nights in 2022-2023 with the TRAPPIST telescopes, in which particular attention was paid to the sodium jet and the quantification of their physical properties (length, brightness). It was found that these properties can vary greatly from one jet to another and independently of the position of Io in its orbit. No clear link was found between the presence of jets and global brightening of the plasma torus and extended sodium nebula, indicating that jets do not contribute straightforwardly to their population. This work also demonstrates the advantage of regular and long-term monitoring to understanding the variability of the sodium jet and presents a large corpus of jet detections against which work in related fields may compare.