arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Thu, 27 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Rocky sub-Neptunes formed by pebble accretion: Rain of rocks from polluted envelopes

Authors:Allona Vazan, Chris W. Ormel

Abstract: Sub-Neptune planets formed in the protoplanetary disk accreted hydrogen-helium (H,He) envelopes. Planet formation models of sub-Neptunes formed by pebble accretion result in small rocky cores surrounded by polluted H,He envelopes where most of the rock (silicate) is in vapor form at the end of the formation phase. This vapor is expected to condense and rain-out as the planet cools. In this Letter we examine the timescale for the rainout and its effect on the thermal evolution. We calculate the thermal and structural evolution of a 10 Earth masses planet formed by pebble accretion, taking into account material redistribution from silicate rainout (condensation and settling) and from convective mixing. We find that the duration of the rainout in sub-Neptunes is on Gyr timescale and varies with envelope mass: planets with envelopes below 0.75 Earth mass rainout into a core-envelope structure in less than 1 Gyr, while planets in excess of 0.75 Earth mass of H,He preserve some of their envelope pollution for billions of years. The energy released by the rainout inflates the radius with respect to planets that start out from a plain core-envelope structure. This inflation would result in estimates of the H,He contents of observed exoplanets based on the standard core-envelope structure to be too high.We identify a number of planets in the exoplanet census where rainout may operate, which would result in their H,He contents to be overestimated by up to a factor two. Future accurate age measurements by the PLATO mission may allow the identification of planets formed with polluted envelopes.

2.On the survivability of a population of gas giant planets on wide orbits

Authors:Ethan Carter, Dimitris Stamatellos

Abstract: The existence of giant planets on wide orbits ($\stackrel{>}{_\sim}100$AU) challenge planet formation theories; the core accretion scenario has difficulty in forming them, whereas the disc instability model forms an overabundance of them that is not seen observations. We perform $N$-body simulations investigating the effect of close stellar encounters ($\leq 1200$AU) on systems hosting wide-orbit giant planets and the extent at which such interactions may disrupt the initial wide-orbit planet population. We find that the effect of an interaction on the orbit of a planet is stronger for high-mass, low-velocity perturbers, as expected. We find that due to just a single encounter there is a $\sim 17%$ chance that the wide-orbit giant planet is liberated in the field, a $\sim 10$% chance it is scattered significantly outwards, and a $\sim 6$% chance it is significantly scattered inwards. Moreover, there is a $\sim 21\%$ chance that its eccentricity is excited to e>0.1, making it more prone to disruption in subsequent encounters. The results strongly suggest that the effect of even a single stellar encounter is significant in disrupting the primordial wide-orbit giant planet population; in reality the effect will be even more prominent, as in a young star-forming region more such interactions are expected to occur. We conclude that the low occurrence rate of wide-orbit planets revealed by observational surveys does not exclude the possibility that such planetary systems are initially abundant, and therefore the disc-instability model may be a plausible scenario for their formation.

3.Finding regions of bounded motion in binary asteroid environment using Lagrangian

Authors:Sebastiano Raffa, Gianmario Merisio, Francesco Topputo

Abstract: Trajectory design in highly-perturbed environments like binary asteroids is challenging. It typically requires using realistic, non-autonomous dynamical models in which periodic solutions vanish. In this work, a novel technique to find regions of bounded motion in the perturbed planar bi-elliptic restricted four-body problem is proposed. Lagrangian descriptors are employed to find regions of bounded motion about Dimorphos, the secondary body of the (65803) Didymos binary system. Results show that Lagrangian descriptors successfully reveal phase space organizing structures both in the unperturbed and perturbed planar bi-elliptic restricted four-body problem. With no solar radiation pressure, regions of bounded motion are visually identified, so granting access to a vast selection of bounded orbits about Dimorphos. Conversely, the presence of solar radiation pressure breaks down the majority of structures, leading to a large region of unstable motion with rare exceptions. Compared to other chaos indicators applied to the astrodynamics, Lagrangian descriptors are more convenient since they avoid propagating variational equations.

4.The Variable Detection of Atmospheric Escape around the young, Hot Neptune AU Mic b

Authors:Keighley E. Rockcliffe, Elisabeth R. Newton, Allison Youngblood, Girish M. Duvvuri, Peter Plavchan, Peter Gao, Andrew W. Mann, Patrick J. Lowrance

Abstract: Photoevaporation is a potential explanation for several features within exoplanet demographics. Atmospheric escape observed in young Neptune-sized exoplanets can provide insight into and characterize which mechanisms drive this evolution and at what times they dominate. AU Mic b is one such exoplanet, slightly larger than Neptune (4.19 Earth radii). It closely orbits a 23 Myr pre-Main Sequence M dwarf with a period of 8.46 days. We obtained two visits of AU Mic b at Lyman-alpha with HST/STIS. One flare within the first HST visit is characterized and removed from our search for a planetary transit. We present a non-detection in our first visit followed by the detection of escaping neutral hydrogen ahead of the planet in our second visit. The outflow absorbed about 30% of the star's Lyman-alpha blue-wing 2.5 hours before the planet's white-light transit. We estimate the highest velocity escaping material has a column density of 10^13.96 cm^-2 and is moving 61.26 km/s away from the host star. AU Mic b's large high energy irradiation could photoionize its escaping neutral hydrogen in 44 minutes, rendering it temporarily unobservable. Our time-variable Lyman-alpha transit ahead of AU Mic b could also be explained by an intermediate stellar wind strength from AU Mic that shapes the escaping material into a leading tail. Future Lyman-alpha observations of this system will confirm and characterize the unique variable nature of its Lyman-alpha transit, which combined with modeling will tune the importance of stellar wind and photoionization.