arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Wed, 30 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Effects of the librationally induced flow in Mercury's fluid core with an outer stably stratified layer

Authors:Fleur Seuren, Santiago A. Triana, Jérémy Rekier, Ankit Barik, Tim Van Hoolst

Abstract: Observational constraints on Mercury's thermal evolution and magnetic field indicate that the top part of the fluid core is stably stratified. Here we compute how a stable layer affects the core flow in response to Mercury's main 88-day longitudinal libration, assuming various degrees of stratification, and study whether the core flow can modify the libration amplitude through viscous and electromagnetic torques acting on the core-mantle boundary (CMB). We show that the core flow strongly depends on the strength of the stratification near the CMB but that the influence of core motions on libration is negligible with or without a stably stratified layer. A stably stratified layer at the top of the core can however prevent resonant behaviour with gravito-inertial modes by impeding radial motions and promote a strong horizontal flow near the CMB. The librationally driven flow is likely turbulent and might produce a non-axisymmetric induced magnetic field with a strength of the order of 1$\%$ of Mercury's dipolar field.

2.Seasonal thaws under mid-to-low pressure atmospheres on Early Mars

Authors:Paolo Simonetti, Giovanni Vladilo, Stavro L. Ivanovski, Laura Silva, Lorenzo Biasiotti, Michele Maris, Giuseppe Murante, Erica Bisesi, Sergio Monai

Abstract: Despite decades of scientific research on the subject, the climate of the first 1.5 Gyr of Mars history has not been fully understood yet. Especially challenging is the need to reconcile the presence of liquid water for extended periods of time on the martian surface with the comparatively low insolation received by the planet, a problem which is known as the Faint Young Sun (FYS) Paradox. In this paper we use ESTM, a latitudinal energy balance model with enhanced prescriptions for meridional heat diffusion, and the radiative transfer code EOS to investigate how seasonal variations of temperature can give rise to local conditions which are conductive to liquid water runoffs. We include the effects of the martian dichotomy, a northern ocean with either 150 or 550 m of Global Equivalent Layer (GEL) and simplified CO$_2$ or H$_2$O clouds. We find that 1.3-to-2.0 bar CO$_2$-dominated atmospheres can produce seasonal thaws due to inefficient heat redistribution, provided that the eccentricity and the obliquity of the planet are sufficiently different from zero. We also studied the impact of different values for the argument of perihelion. When local favorable conditions exist, they nearly always persist for $>15\%$ of the martian year. These results are obtained without the need for additional greenhouse gases (e.g. H$_2$, CH$_4$) or transient heat-injecting phenomena (e.g. asteroid impacts, volcanic eruptions). Moderate amounts (0.1 to 1\%) of CH$_4$ significantly widens the parameter space region in which seasonal thaws are possible.

3.The Inhomogeneity Effect I: Inhomogeneous Surface and Atmosphere Accelerate Planetary Cooling

Authors:Xi Zhang

Abstract: We propose a general principle that under the radiative-convective equilibrium, the spatial and temporal variations in a planet's surface and atmosphere tend to increase its cooling. This principle is based on Jensen's inequality and the curvature of the response functions of surface temperature and outgoing cooling flux to changes in incoming stellar flux and atmospheric opacity. We use an analytical model to demonstrate that this principle holds for various planet types: (1) on an airless planet, the mean surface temperature is lower than its equilibrium temperature; (2) on terrestrial planets with atmospheres, the inhomogeneity of incoming stellar flux and atmospheric opacity reduces the mean surface temperature; (3) on giant planets, inhomogeneously distributed stellar flux and atmospheric opacity increase the outgoing infrared flux, cooling the interior. Although the inhomogeneity of visible opacity might sometimes heat the atmosphere, the effect is generally much smaller than the inhomogeneous cooling effect of infrared opacity. Compared with the homogeneous case, the mean surface temperature on inhomogeneous terrestrial planets can decrease by more than 20\%, and the internal heat flux on giant planets can increase by over an order of magnitude. Despite simplifications in our analytical framework, the effect of stellar flux inhomogeneity appears to be robust, while further research is needed to fully understand the effects of opacity inhomogeneity in more realistic situations. This principle impacts our understanding of planetary habitability and the evolution of giant planets using low-resolution and one-dimensional frameworks that may have previously overlooked the role of inhomogeneity.

4.The Inhomogeneity Effect II: Rotational and Orbital States Impact Planetary Cooling

Authors:Xi Zhang

Abstract: We generalize the theory of the inhomogeneity effect to enable comparison among different inhomogeneous planets. A metric of inhomogeneity based on the cumulative distribution function is applied to investigate the dependence of planetary cooling on previously overlooked parameters. The mean surface temperature of airless planets increases with rotational rate and surface thermal inertia, which bounds the value in the tidally locked configuration and the equilibrium temperature. Using an analytical model, we demonstrate that the internal heat flux of giant planets exhibits significant spatial variability, primarily emitted from the nightside and high-latitude regions acting as ``radiator fins." Given a horizontally uniform interior temperature in the convective zone, the outgoing internal flux increases up to several folds as the inhomogeneity of the incoming stellar flux increases. The enhancement decreases with increasing heat redistribution through planetary dynamics or rotation. The outgoing internal flux on rapidly rotating planets generally increases with planetary obliquity and orbital eccentricity. The radiative timescale and true anomaly of the vernal equinox also play significant roles. If the radiative timescale is long, the outgoing internal flux shows a slightly decreasing but nonlinear trend with obliquity. Our findings indicate that rotational and orbital states greatly influence the cooling of planets and impact the interior evolution of giant planets, particularly for tidally locked planets and planets with high eccentricity and obliquity (such as Uranus), as well as the spatial and temporal variations of their cooling fluxes.

5.The Inhomogeneity Effect III: Weather Impacts on the Heat Flow of Hot Jupiters

Authors:Xi Zhang, Cheng Li, Huazhi Ge, Tianhao Le

Abstract: The interior flux of a giant planet impacts atmospheric motion, and the atmosphere dictates the interior's cooling. Here we use a non-hydrostatic general circulation model (SNAP) coupled with a multi-stream multi-scattering radiative module (HARP) to simulate the weather impacts on the heat flow of hot Jupiters. We found that the vertical heat flux is primarily transported by convection in the lower atmosphere and regulated by dynamics and radiation in the overlying ``radiation-circulation" zone. The temperature inversion occurs on the dayside and reduces the upward radiative flux. The atmospheric dynamics relay the vertical heat transport until the radiation becomes efficient in the upper atmosphere. The cooling flux increases with atmospheric drag due to increased day-night contrast and spatial inhomogeneity. The temperature dependence of the infrared opacity greatly amplifies the opacity inhomogeneity. Although atmospheric circulation could transport heat downward in a narrow region above the radiative-convective boundary, the opacity inhomogeneity effect overcomes the dynamical effect and leads to a larger overall interior cooling than the local simulations with the same interior entropy and stellar flux. The enhancement depends critically on the equilibrium temperature, drag, and atmospheric opacity. In a strong-drag atmosphere hotter than 1600 K, a significant inhomogeneity effect in three-dimensional (3D) models can boost interior cooling several-fold compared to the 1D radiative-convection equilibrium models. This study confirms the analytical argument of the inhomogeneity effect in Zhang (2023ab). It highlights the importance of using 3D atmospheric models in understanding the inflation mechanisms of hot Jupiters and giant planet evolution in general.