arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Tue, 05 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Mars orientation and rotation angles

Authors:Marie Yseboodt, Rose-Marie Baland, Sébastien Le Maistre

Abstract: The rotation and orientation of Mars is commonly described using two different sets of angles, namely the Euler angles wrt the Mars orbit plane and the right ascension, declination, and prime meridian location angles wrt the Earth equator at J2000 (as adopted by the IAU). We propose a formulation for both these sets of angles, which consists of the sum of a second degree polynomial and of periodic and Poisson series. Such a formulation is shown here to enable accurate (and physically sound) transformation from one set of angles to the other. The transformation formulas are provided and discussed in this paper. In particular, we point that the quadratic and Poisson terms are key ingredients to reach a transformation precision of 0.1 mas, even 30 years away from the reference epoch of the rotation model (e.g. J2000). Such a precision is required to accurately determine the smaller and smaller geophysical signals observed in the high-accuracy data acquired from the surface of Mars. In addition, we present good practices to build an accurate Martian rotation model over a long time span (30 years around J2000) or over a shorter one (e.g. lifetime of a space mission). We recommend to consider the J2000 mean orbit of Mars as the reference plane for Euler angles. An accurate rotation model should make use of up-to-date models for the rigid and liquid nutations, relativistic corrections in rotation, and polar motion induced by the external torque. Our transformation model and recommendations can be used to define the future IAU solution for the rotation and orientation of Mars using right ascension, declination, and prime meridian location. In particular, thanks to its quadratic terms, our transformation model does not introduce arbitrary and non-physical terms of very long period and large amplitudes, thus providing unbiased values of the rates and epoch values of the angles.

2.FastChem Cond: Equilibrium chemistry with condensation and rainout for cool planetary and stellar environments

Authors:Daniel Kitzmann, Joachim W. Stock, A. Beate C. Patzer

Abstract: Cool astrophysical objects, such as (exo)planets, brown dwarfs, or asymptotic giant branch stars, can be strongly affected by condensation. Condensation does not only directly affect the chemical composition of the gas phase by removing elements but the condensed material also influences other chemical and physical processes in these object. This includes, for example, the formation of clouds in planetary atmospheres and brown dwarfs or the dust-driven winds of evolved stars. In this study we introduce FastChem Cond, a new version of the FastChem equilibrium chemistry code that adds a treatment of equilibrium condensation. Determining the equilibrium composition under the impact of condensation is complicated by the fact that the number of condensates that can exist in equilibrium with the gas phase is limited by a phase rule. However, this phase rule does not directly provide information on which condensates are stable. As a major advantage of FastChem Cond is able to automatically select the set stable condensates satisfying the phase rule. Besides the normal equilibrium condensation, FastChem Cond can also be used with the rainout approximation that is commonly employed in atmospheres of brown dwarfs or (exo)planets. FastChem Cond is available as open-source code, released under the GPLv3 licence. In addition to the C++ code, FastChem Cond also offers a Python interface. Together with the code update we also add about 290 liquid and solid condensate species to FastChem.

3.Sustainability assessment of Low Earth Orbit (LEO) satellite broadband mega-constellations

Authors:Ogutu B. Osoro, Edward J. Oughton, Andrew R. Wilson, Akhil Rao

Abstract: The growth of mega-constellations is rapidly increasing the number of rocket launches required to place new satellites in space. While Low Earth Orbit (LEO) broadband satellites help to connect unconnected communities and achieve the Sustainable Development Goals, there are also a range of negative environmental externalities, from the burning of rocket fuels and resulting environmental emissions. We present sustainability analytics for phase 1 of the three main LEO constellations including Amazon Kuiper (3,236 satellites), OneWeb (648 satellites), and SpaceX Starlink (4,425 satellites). In baseline scenarios over five years, we find a per subscriber carbon dioxide equivalent (CO$_2$eq) of 0.70$\pm$0.34 tonnes for Kuiper, 1.41$\pm$0.71 tonnes for OneWeb and 0.47$\pm$0.15 tonnes CO$_2$eq/subscriber for Starlink. However, in the worst-case emissions scenario these values increase to 3.02$\pm$1.48 tonnes for Kuiper, 1.7$\pm$0.71 tonnes for OneWeb and 1.04$\pm$0.33 tonnes CO$_2$eq/subscriber for Starlink, more than 31-91 times higher than equivalent terrestrial mobile broadband. Importantly, phase 2 constellations propose to increase the number of satellites by an order-of-magnitude higher, highlighting the pressing need to mitigate negative environmental impacts. Strategic choices in rocket design and fuel options can help to substantially mitigate negative sustainability impacts.

4.Sesquinary Catastrophe For Close-In Moons with Dynamically Excited Orbits

Authors:Matija Ćuk, Douglas P. Hamilton, David A. Minton, Sarah T. Stewart

Abstract: We identify a new mechanism that can lead to the destruction of small, close-in planetary satellites. If a small moon close to the planet has a sizable eccentricity and inclination, its ejecta that escape to planetocentric orbit would often re-impact with much higher velocity due to the satellite's and the fragment's orbits precessing out of alignment. If the impacts of returning ejecta result in net erosion, a runaway process can occur which may end in disruption of the satellite, and we term this process ``sesquinary catastrophe''. We expect the moon to re-accrete, but on an orbit with significantly lower eccentricity and inclination. We find that the large majority of small close-in moons in the Solar System, have orbits that are immune to sesquinary catastrophe. The exceptions include a number of resonant moonlets of Saturn for which resonances may affect the velocities of re-impact of their own debris. Additionally, we find that Neptune's moon Naiad (and to a lesser degree, Jupiter's Thebe) must have substantial internal strength, in line with prior estimates based on Roche limit stability. We also find that sesquinary instability puts important constraints on the plausible past orbits of Phobos and Deimos or their progenitors.