arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Wed, 05 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Analogous response of temperate terrestrial exoplanets and Earth's climate dynamics to greenhouse gas supplement

Authors:Assaf Hochman, Thaddeus D. Komacek, Paolo De Luca

Abstract: Humanity is close to characterizing the atmospheres of rocky exoplanets due to the advent of JWST. These astronomical observations motivate us to understand exoplanetary atmospheres to constrain habitability. We study the influence greenhouse gas supplement has on the atmosphere of TRAPPIST-1e, an Earth-like exoplanet, and Earth itself by analyzing ExoCAM and CMIP6 model simulations. We find an analogous relationship between CO2 supplement and amplified warming at non-irradiated regions (night side and polar) - such spatial heterogeneity results in significant global circulation changes. A dynamical systems framework provides additional insight into the vertical dynamics of the atmospheres. Indeed, we demonstrate that adding CO2 increases temporal stability near the surface and decreases stability at low pressures. Although Earth and TRAPPIST-1e take entirely different climate states, they share the relative response between climate dynamics and greenhouse gas supplements.

2.Properties of Original Impactors Estimated from Three-Dimensional Analysis of Whole Stardust Tracks

Authors:Michael Greenberg, Denton S. Ebel

Abstract: The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km/sec. We performed high resolution three-dimensional imaging and X-ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using Laser Scanning Confocal Microscopy, including measurements of track volumes, entry hole size and cross-sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron-based X-ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of non-destructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity and chemical composition of whole Stardust impactors.

3.The Origin of Chondrules: Constraints from Matrix-Chondrule Complementarity

Authors:Herbert Palme, Dominik C. Hezel, Denton S. Ebel

Abstract: One of the major unresolved problems in cosmochemistry is the origin of chondrules, once molten, spherical silicate droplets with diameters of 0.2 to 2 mm. Chondrules are an essential component of primitive meteorites and perhaps of all early solar system materials including the terrestrial planets. Numerous hypotheses have been proposed for their origin. Many carbonaceous chondrites are composed of about equal amounts of chondrules and fine-grained matrix. Recent data confirm that matrix in carbonaceous chondrites has high Si/Mg and Fe/Mg ratios when compared to bulk carbonaceous chondrites with solar abundance ratios. Chondrules have the opposite signature, low Si/Mg and Fe/Mg ratios. In some carbonaceous chondrites chondrules have low Al/Ti ratios, matrix has the opposite signature and the bulk is chondritic. It is shown in detail that these complementary relationships cannot have evolved on the parent asteroid(s) of carbonaceous chondrites. They reflect preaccretionary processes. Both chondrules and matrix must have formed from a single, solar-like reservoir. Consequences of complementarity for chondrule formation models are discussed. An independent origin and/or random mixing of chondrules and matrix can be excluded. Hence, complementarity is a strong constraint for all astrophysical-cosmochemical models of chondrule formation. Although chondrules and matrix formed from a single reservoir, the chondrule-matrix system was open to the addition of oxygen and other gaseous components.

4.Distribution of s-, r-, and p-process nuclides in the early Solar System inferred from Sr isotope anomalies in meteorites

Authors:Jonas M. Schneider, Christoph Burkhardt, Thorsten Kleine

Abstract: Nucleosynthetic isotope anomalies in meteorites allow distinguishing between the non-carbonaceous (NC) and carbonaceous (CC) meteorite reservoirs and show that correlated isotope anomalies exist in both reservoirs. It is debated, however, whether these anomalies reflect thermal processing of presolar dust in the disk or are primordial heterogeneities inherited from the Solar System's parental molecular cloud. Here, using new high-precision 84Sr isotope data, we show that NC meteorites, Mars, and the Earth and Moon are characterized by the same 84Sr isotopic composition. This 84Sr homogeneity of the inner Solar System contrasts with the well-resolved and correlated isotope anomalies among NC meteorites observed for other elements, and most likely reflects correlated s- and (r-, p-)-process heterogeneities leading to 84Sr excess and deficits of similar magnitude which cancel each other. For the same reason there is no clearly resolved 84Sr difference between NC and CC meteorites, because in some carbonaceous chondrites the characteristic 84Sr excess of the CC reservoir is counterbalanced by an 84Sr deficit resulting from s-process variations. Nevertheless, most carbonaceous chondrites exhibit 84Sr excesses, which reflect admixture of refractory inclusions and more pronounced s-process heterogeneities in these samples. Together, the correlated variations of s-, (r-, p-)-process nuclides revealed by the 84Sr data of this study refute an origin of these isotope anomalies solely by processing of presolar dust grains, but points to primordial mixing of isotopically distinct dust reservoirs as the dominant process producing the isotopic heterogeneity of the Solar System.

5.Modelling dynamically driven global cloud formation microphysics in the HAT-P-1b atmosphere

Authors:Elspeth K. H. Lee

Abstract: Insight into the formation and global distribution of cloud particles in exoplanet atmospheres continues to be a key problem to tackle going into the JWST era. Understanding microphysical cloud processes and atmospheric feedback mechanisms in 3D has proven to be a challenging prospect for exoplaneteers. In an effort to address the large computational burden of coupling these models in 3D simulations, we develop an open source, lightweight and efficient microphysical cloud model for exoplanet atmospheres. `Mini-cloud' is a microphysical based cloud model for exoplanet condensate clouds that can be coupled to contemporary general circulation models (GCMs) and other time dependent simulations. We couple mini-cloud to the Exo-FMS GCM and use a prime JWST target, the hot Jupiter HAT-P-1b, as a test case for the cloud formation module. After 1000+ of days of integration with mini-cloud, our results show a complex 3D cloud structure with cloud properties relating closely the dynamical and temperature properties of the atmosphere. Current transit and emission spectra data are best fit with a reduced cloud particle number density compared to the nominal simulation, with our simulated JWST NIRISS SOSS spectra showing promising prospects for characterising the atmosphere in detail. Overall, our study is another small step in first principles 3D exoplanet cloud formation microphysical modelling. We suggest that additional physics not included in the present model, such as coagulation, are required to reduce the number density of particles to appropriately observed levels.

6.Hunting for exoplanets via magnetic star-planet interactions: geometrical considerations for radio emission

Authors:Robert D. Kavanagh, Harish K. Vedantham

Abstract: Recent low-frequency radio observations suggest that some nearby M dwarfs could be interacting magnetically with undetected close-in planets, powering the emission via the electron cyclotron maser (ECM) instability. Confirmation of such a scenario could reveal the presence of close-in planets around M dwarfs, which are typically difficult to detect via other methods. ECM emission is beamed, and is generally only visible for brief windows depending on the underlying system geometry. Due to this, detection may be favoured at certain orbital phases, or from systems with specific geometric configurations. In this work, we develop a geometric model to explore these two ideas. Our model produces the visibility of the induced emission as a function of time, based on a set of key parameters that characterise magnetic star-planet interactions. Utilising our model, we find that the orbital phases where emission appears are highly dependent on the underlying parameters, and does not generally appear at the quadrature points in the orbit as is seen for the Jupiter-Io interaction. Then using non-informative priors on the system geometry, we show that untargeted radio surveys are biased towards detecting emission from systems with planets in near face-on orbits. While transiting exoplanets are still likely to be detectable, they are less likely to be seen than those in near face-on orbits. Our forward model serves to be a powerful tool for both interpreting and appropriately scheduling radio observations of exoplanetary systems, as well as inverting the system geometry from observations.

7.Planetary evolution with atmospheric photoevaporation II: Fitting the slope of the radius valley by combining boil-off and XUV-driven escape

Authors:Lukas Affolter, Christoph Mordasini, Apurva V. Oza, Daria Kubyshkina, Luca Fossati

Abstract: The Kepler satellite has revealed a gap between sub-Neptunes and super-Earths that atmospheric escape models had predicted as an evaporation valley. We seek to contrast results from a simple XUV-driven energy-limited (ELIM) escape model against those from a direct hydrodynamic (HYDRO) model. Besides XUV-driven escape, the latter also includes the boil-off regime. We couple the two models to an internal structure model and follow the planets' temporal evolution over Gyr. To see the population-wide imprint of the two models, we first employ a rectangular grid in initial conditions. We then study the slope of the valley also for initial conditions derived from the Kepler planets. For the rectangular grid, we find that the power-law slope of the valley with respect to orbital period is -0.18 and -0.11 in the ELIM and HYDRO model, respectively. For the initial conditions derived from the Kepler planets, the results are similar (-0.16 and -0.10). While the slope found with the ELIM model is steeper than observed, the one of the HYDRO model is in excellent agreement with observations. The reason for the shallower slope is caused by the two regimes in which the ELIM model fails: First, puffy planets at low stellar irradiation. For them, boil-off dominates mass loss. However, boil-off is absent in the ELIM model, thus it underestimates escape relative to HYDRO. Second, massive compact planets at high XUV irradiation. For them, the ELIM approximation overestimates escape relative to the HYDRO case because of cooling by thermal conduction, neglected in the ELIM model. The two effects act together in concert to yield in the HYDRO model a shallower slope of the valley that agrees very well with observations. We conclude that an escape model that includes boil-off and a more realistic treatment of cooling mechanisms can reproduce one of the most important constraints, the valley slope.

8.DiskMINT: A Tool to Estimate Disk Masses with CO Isotopologues

Authors:Dingshan Deng, Maxime Ruaud, Uma Gorti, Ilaria Pascucci

Abstract: CO is one of the most abundant molecules in protoplanetary disks, and optically thin emission from its isotopologues has been detected in many of them. However, several past works have argued that reproducing the relatively low emission of CO isotopologues requires a very low disk mass or significant CO depletion. Here, we present a Python code, DiskMINT, which includes gas density and temperature structures that are both consistent with the thermal pressure gradient, isotope-selective chemistry, and conversion of CO into $\mathrm{CO_2}$ ice on grain-surfaces. The code generates a self-consistent disk structure, where the gas disk distribution is obtained from a Spectral Energy Distribution (SED)-derived dust disk structure with multiple grain sizes. We use DiskMINT to study the disk of RU~Lup, a high-accreting star whose disk was previously inferred to have a gas mass of only $\sim 1.5\times10^{-3}\,M_\odot$ and gas-to-dust mass ratio of $\sim 4$. Our best-fit model to the long-wavelength continuum emission can explain the total $\mathrm{C^{18}O}$ luminosity as well as the $\mathrm{C^{18}O}$ velocity and radial intensity profiles, and obtains a gas mass of $\sim 1.2\times10^{-2}\,M_\odot$, an order of magnitude higher than previous results. A disk model with parametric Gaussian vertical distribution that better matches the IR-SED can also explain the observables above with a similarly high gas mass $\sim 2.1\times10^{-2}\,M_\odot$. We confirm the conclusions of Ruaud et al. (2022) that optically thin $\mathrm{C^{18}O}$ rotational lines provide reasonable estimates of the disk mass and can therefore be used as gas disk tracers.