arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Fri, 16 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Chemical and Isotopic Composition Measurements on Atmospheric Probes Exploring Uranus and Neptune

Authors:Audrey Vorburger, Peter Wurz, Hunter Waite

Abstract: So far no designated mission to either of the two ice giants, Uranus and Neptune, exists. Almost all of our gathered information on these planets comes from remote sensing. In recent years, NASA and ESA have started planning for future mission to Uranus and Neptune, with both agencies focusing their attention on orbiters and atmospheric probes. Whereas information provided by remote sensing is undoubtedly highly valuable, remote sensing of planetary atmospheres also presents some shortcomings, most of which can be overcome by mass spectrometers. In most studies presented to date a mass spectrometer experiment is thus a favored science instrument for in situ composition measurements on an atmospheric probe. Mass spectrometric measurements can provide unique scientific data, i.e., sensitive and quantitative measurements of the chemical composition of the atmosphere, including isotopic, elemental, and molecular abundances. In this review paper we present the technical aspects of mass spectrometry relevant to atmospheric probes. This includes the individual components that make up mass spectrometers and possible implementation choices for each of these components. We then give an overview of mass spectrometers that were sent to space with the intent of probing planetary atmospheres, and discuss three instruments, the heritage of which is especially relevant to Uranus and Neptune probes, in detail. The main part of this paper presents the current state-of-art in mass spectrometry intended for atmospheric probe. Finally, we present a possible descent probe implementation in detail, including measurement phases and associated expected accuracies for selected species.

2.Perturbed Initial Orbit Determination

Authors:Alberto Fossà, Matteo Losacco, Roberto Armellin

Abstract: An algorithm for robust initial orbit determination (IOD) under perturbed orbital dynamics is presented. By leveraging map inversion techniques defined in the algebra of Taylor polynomials, this tool is capable of not only returning an highly accurate solution to the IOD problem, but also estimating a range of validity for the aforementioned solution in which the true orbit state should lie. Automatic domain splitting is then used on top of the IOD routines to ensure the local truncation error introduced by a polynomial representation of the state estimate remains below a predefined threshold to meet the specified requirements in accuracy. The algorithm is adapted to three types of ground based sensors, namely range radars, Doppler-only radars and optical telescopes by taking into account their different constraints in terms of available measurements and sensor noise. Its improved performance with respect to a Keplerian based IOD solution is finally demonstrated with large scale numerical simulations over a subset of tracked objects in low Earth orbit.

3.Deprojecting and constraining the vertical thickness of exoKuiper belts

Authors:James Terrill, Sebastian Marino, Richard A. Booth, Yinuo Han, Jeff Jennings, Mark C. Wyatt

Abstract: Constraining the vertical and radial structure of debris discs is crucial to understanding their formation, evolution and dynamics. To measure both the radial and vertical structure, a disc must be sufficiently inclined. However, if a disc is too close to edge-on, deprojecting its emission becomes non-trivial. In this paper we show how Frankenstein, a non-parametric tool to extract the radial brightness profile of circumstellar discs, can be used to deproject their emission at any inclination as long as they are optically thin and axisymmetric. Furthermore, we extend Frankenstein to account for the vertical thickness of an optically thin disc ($H(r)$) and show how it can be constrained by sampling its posterior probability distribution and assuming a functional form (e.g. constant $h=H/r$), while fitting the radial profile non-parametrically. We use this new method to determine the radial and vertical structure of 16 highly inclined debris discs observed by ALMA. We find a wide range of vertical aspect ratios, $h$, ranging from $0.020\pm0.002$ (AU Mic) to $0.20\pm0.03$ (HD 110058), which are consistent with parametric models. We find a tentative correlation between $h$ and the disc fractional width, as expected if wide discs were more stirred. Assuming discs are self-stirred, the thinnest discs would require the presence of at least 500 km-sized planetesimals. The thickest discs would likely require the presence of planets. We also recover previously inferred and new radial structures, including a potential gap in the radial distribution of HD 61005. Finally, our new extension of Frankenstein also allows constraining how $h$ varies as a function of radius, which we test on 49 Ceti, finding that $h$ is consistent with being constant.

4.TOI-908: a planet at the edge of the Neptune desert transiting a G-type star

Authors:Faith Hawthorn, Daniel Bayliss, David J. Armstrong, Jorge Fernández Fernández, Ares Osborn, Sérgio G. Sousa, Vardan Adibekyan, Jeanne Davoult, Karen A. Collins, Yann Alibert, Susana C. C. Barros, François Bouchy, Matteo Brogi, David R. Ciardi, Tansu Daylan, Elisa Delgado Mena, Olivier D. S. Demangeon, Rodrigo F. Díaz, Tianjun Gan, Keith Horne, Sergio Hoyer, Alan M. Levine, Jorge Lillo-Box, Louise D. Nielsen, Hugh P. Osborn, George R. Ricker, José Rodrigues, Nuno C. Santos, Richard P. Schwarz, Sara Seager, Juan Serrano Bell, Avi Shporer, Chris Stockdale, Paul A. Strøm, Peter Tenenbaum, Stéphane Udry, Peter J. Wheatley, Joshua N. Winn, Carl Ziegler

Abstract: We present the discovery of an exoplanet transiting TOI-908 (TIC-350153977) using data from TESS sectors 1, 12, 13, 27, 28 and 39. TOI-908 is a T = 10.7 mag G-dwarf ($T_{eff}$ = 5626 $\pm$ 61 K) solar-like star with a mass of 0.950 $\pm$ 0.010 $M_{\odot}$ and a radius of 1.028 $\pm$ 0.030 $R_{\odot}$. The planet, TOI-908 b, is a 3.18 $\pm$ 0.16 $R_{\oplus}$ planet in a 3.18 day orbit. Radial velocity measurements from HARPS reveal TOI-908 b has a mass of approximately 16.1 $\pm$ 4.1 $M_{\oplus}$ , resulting in a bulk planetary density of 2.7+0.2-0.4 g cm-3. TOI-908 b lies in a sparsely-populated region of parameter space known as the Neptune desert. The planet likely began its life as a sub-Saturn planet before it experienced significant photoevaporation due to X-rays and extreme ultraviolet radiation from its host star, and is likely to continue evaporating, losing a significant fraction of its residual envelope mass.

5.Semi-analytical estimates for the chaotic diffusion in the Second Fundamental Model of Resonance. Application to Earth's navigation satellites

Authors:Edoardo Legnaro, Christos Efthymiopoulos, Maria Harsoula

Abstract: We discuss the applicability of the Melnikov and Landau-Teller theories in obtaining semi-analytical estimates of the speed of chaotic diffusion in systems driven by the separatrix-like stochastic layers of a resonance belonging to the `second fundamental model' (SFM)\cite{henrard1983second}. Stemming from the analytic solution for the SFM in terms of Weierstrass elliptic functions, we introduce stochastic Melnikov and Landau-Teller models allowing to locally approximate chaotic diffusion as a sequence of uncorrelated `jumps' observed in the time series yielding the slow evolution of an ensemble of trajectories in the space of the adiabatic actions of the system. Such jumps occur in steps of one per homoclinic loop. We show how a semi-analytical determination of the probability distribution of the size of the jumps can be arrived at by the Melnikov and Landau-Teller approximate theories. Computing also the mean time required per homoclinic loop, we arrive at estimates of the chaotic diffusion coefficient in such systems. As a concrete example, we refer to the long-term diffusion of a small object (e.g. Earth navigation satellite or space debris) within the chaotic layers of the so-called $2g+h$ lunisolar resonance, which is of the SFM type. After a suitable normal form reduction of the Hamiltonian, we compute estimates of the speed of diffusion of these objects, which compare well with the results of numerical experiments.