arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Tue, 08 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Dynamical orbital evolution of asteroids and planetesimals across distinct chemical reservoirs due to accretion growth of planets in the early solar system

Authors:Sandeep Sahijpal

Abstract: N-body numerical simulations code for the orbital motion of asteroids/planetesimals within the asteroid belt under the gravitational influence of the sun and the accreting planets has been developed. The aim is to make qualitative, and to an extent a semi-quantitative argument, regarding the possible extent of radial mixing and homogenization of planetesimal reservoirs of the two observed distinct spectral types , viz., the S-type and C-type, across the heliocentric distances due to their dynamical orbital evolution, thereby, eventually leading to the possible accretion of asteroids having chemically diverse constituents. The spectral S-type and C-type asteroids are broadly considered as the parent bodies of the two observed major meteoritic dichotomy classes, namely, the non-carbonaceous (NC) and carbonaceous (CC) meteorites, respectively. The present analysis is performed to understand the evolution of the observed dichotomy and its implications due to the nebula and early planetary processes during the initial 10 Myrs (Million years). The homogenization across the two classes is studied in context to the accretion timescales of the planetesimals with respect to the half-life of the potent planetary heat source, 26Al. The accretion over a timescale of ~1.5 Myr. possibly resulted in the planetary-scale differentiation of planetesimals to produce CC and NC achondrites and iron meteorite parent bodies, whereas, the prolonged accretion over a timescale of 2-5 Myrs. resulted in the formation of CC and NC chondrites. Our simulation results indicate a significant role of the initial eccentricities and the masses of the accreting giant planets, specifically, Jupiter and Saturn, in triggering the eccentricity churning of the planetesimals across the radial distances......

2.TCF periodogram's high sensitivity: A method for optimizing detection of small transiting planets

Authors:Yash Gondhalekar, Eric D. Feigelson, Gabriel A. Caceres, Marco Montalto, Snehanshu Saha

Abstract: We conduct a methodological study for statistically comparing the sensitivities of two periodograms for weak signal planet detection in transit surveys: the widely used Box-Least Squares (BLS) algorithm following light curve detrending and the Transit Comb Filter (TCF) algorithm following autoregressive ARIMA modeling. Small depth transits are injected into light curves with different simulated noise characteristics. Two measures of spectral peak significance are examined: the periodogram signal-to-noise ratio (SNR) and a False Alarm Probability (FAP) based on the generalized extreme value distribution. The relative performance of the BLS and TCF algorithms for small planet detection is examined for a range of light curve characteristics, including orbital period, transit duration, depth, number of transits, and type of noise. The TCF periodogram applied to ARIMA fit residuals with the SNR detection metric is preferred when short-memory autocorrelation is present in the detrended light curve and even when the light curve noise had white Gaussian noise. BLS is more sensitive to small planets only under limited circumstances with the FAP metric. BLS periodogram characteristics are inferior when autocorrelated noise is present. Application of these methods to TESS light curves with small exoplanets confirms our simulation results. The study ends with a decision tree that advises transit survey scientists on procedures to detect small planets most efficiently. The use of ARIMA detrending and TCF periodograms can significantly improve the sensitivity of any transit survey with regularly spaced cadence.

3.An improved model of metal/silicate differentiation during Earth's accretion

Authors:K. I. Dale, D. C. Rubie, M. Nakajima, S. Jacobson, G. Nathan, G. J. Golabek, S. Cambioni, A. Morbidelli

Abstract: We improved the algorithm presented in Rubie et al. (2015) to model the chemical evolution of Earth driven by iron/silicate differentiation during the planet's accretion. The pressure at which the equilibration occurs during a giant impact is no longer a free parameter but is determined by the smooth particle hydrodynamic (SPH) simulations of Nakajima et al. (2021). Moreover, impacting planetesimals are now assumed to be too small to cause melting and differentiation and thus their materials are stored in the crystalline upper mantle of the growing planet until a hydrostatically relaxed global magma ocean forms in the aftermath of a giant impact, whose depth is also estimated from Nakajima et al. (2021). With these changes, not all dynamical simulations lead to a satisfactory reproduction of the chemical composition of the bulk silicate Earth (BSE). Thus, the latter becomes diagnostic of the success of dynamical models. In the successful cases also the BSE abundances of W and Mo can be reproduced, that were previously hard to fit (Jennings et al., 2021).

4.Size-dependent charging of dust particles in protoplanetary disks Can turbulence cause charge separation and lightning?

Authors:Thorsten Balduin, Peter Woitke, Wing-Fai Thi, Uffe Gråe Jørgensen, Yasuhito Narita

Abstract: Protoplanetary disk are the foundation of planet formation. Lightning can have a profound impact on the chemistry of planetary atmospheres. The emergence of lightning in a similar manner in protoplanetary disks, would substantially alter the chemistry of protoplanetary disks. We aim to study under which conditions lightning could emerge within protoplanetary disks. We employ the ProDiMo code to make 2D thermo-chemical models of protoplanetary disks. We included a new way of how the code handles dust grains, which allows the consideration of dust grains of different sizes. We investigate the chemical composition, dust charging behaviour and charge balance of these models, to determine which regions could be most sufficient for lightning. We identify 6 regions within the disks where the charge balance is dominated by different radiation processes and find that the emergence of lightning is most probable in the lower and warmer regions of the midplane. This is due to the low electron abundance ($n_{\rm e}/n_{\rm\langle H \rangle}<10^{-15}$) in these regions and dust grains being the most abundant negative charge carriers ($ n_{\rm Z}/n_{\rm\langle H \rangle}> 10^{-13}$). We find that $\rm NH4^+$ is the most abundant positive charge carrier in those regions at the same abundances as the dust grains. We then develop a method of inducing electric fields via turbulence within this mix of dust grains and $\rm NH_4^+$. The electric fields generated with this mechanism are however several orders of magnitude weaker than required to overcome the critical electric field.

5.Time-resolved transmission spectroscopy of the ultra-hot Jupiter WASP-189 b

Authors:Bibiana Prinoth, H. Jens Hoeijmakers, Stefan Pelletier, Daniel Kitzmann, Brett M. Morris, Andreas Seifahrt, David Kasper, Heidi H. Korhonen, Madeleine Burheim, Jacob L. Bean, Björn Benneke, Nicholas W. Borsato, Madison Brady, Simon L. Grimm, Rafael Luque, Julian Stürmer, Brian Thorsbro

Abstract: Ultra-hot Jupiters are tidally locked with their host stars dividing their atmospheres into a hot dayside and a colder nightside. As the planet moves through transit, different regions of the atmosphere rotate into view revealing different chemical regimes. High-resolution spectrographs can observe asymmetries and velocity shifts, and offer the possibility for time-resolved spectroscopy. In this study, we search for other atoms and molecules in the planet`s transmission spectrum and investigate asymmetric signals. We analyse and combine eight transits of the ultra-hot Jupiter WASP-189 b taken with the HARPS, HARPS-N, ESPRESSO and MAROON-X high-resolution spectrographs. Using the cross-correlation technique, we search for neutral and ionised atoms, and oxides and compare the obtained signals to model predictions. We report significant detections for H, Na, Mg, Ca, Ca+, Ti, Ti+, TiO, V, Cr, Mn, Fe, Fe+, Ni, Sr, Sr+, and Ba+. Of these, Sr, Sr+, and Ba+ are detected for the first time in the transmission spectrum of WASP-189 b. In addition, we robustly confirm the detection of titanium oxide based on observations with HARPS and HARPS-N using the follow-up observations performed with MAROON-X and ESPRESSO. By fitting the orbital traces of the detected species by means of time-resolved spectroscopy using a Bayesian framework, we infer posterior distributions for orbital parameters as well as lineshapes. Our results indicate that different species must originate from different regions of the atmosphere to be able to explain the observed time dependence of the signals. Throughout the course of the transit, most signal strengths are expected to increase due to the larger atmospheric scale height at the hotter trailing terminator. For some species, however, the signals are instead observed to weaken due to ionisation for atoms and their ions, or the dissociation of molecules on the dayside.

6.Metrics for Optimizing Searches for Tidally Decaying Exoplanets

Authors:Brian Jackson, Elisabeth R. Adams, Jeffrey P. Morgenthaler

Abstract: Tidal interactions between short-period exoplanets and their host stars drive orbital decay and have likely led to engulfment of planets by their stars. Precise transit timing surveys, with baselines now spanning decades for some planets, are directly detecting orbital decay for a handful of planets, with corroboration for planetary engulfment coming from independent lines of evidence. More than that, recent observations have perhaps even caught the moment of engulfment for one unfortunate planet. These portentous signs bolster prospects for ongoing surveys, but optimizing such a survey requires considering the astrophysical parameters that give rise to robust timing constraints and large tidal decay rates, as well as how best to schedule observations conducted over many years. The large number of possible targets means it is not feasible to continually observe all planets that might exhibit detectable tidal decay. In this study, we explore astrophysical and observational properties for a short-period exoplanet system that can maximize the likelihood for observing tidally driven transit-timing variations. We consider several fiducial observational strategies and real exoplanet systems reported to exhibit decay. We show that moderately frequent (a few transits per year) observations may suffice to detect tidal decay within just a few years. Tidally driven timing variations take time to grow to detectable levels, and so we estimate how long that growth takes as a function of timing uncertainties and tidal decay rate and provide thresholds for deciding that tidal decay has been detected.

7.Effects of Planetary Approximations on Asteroid Deflection Previsibility for Trajectory Design

Authors:Rodolfo Batista Negri, Antônio Fernando Bertachini de Almeida Prado

Abstract: This research investigates the influence of distant encounters between an asteroid and perturbing bodies on the deflection process, aiming to provide valuable guidelines for the trajectory design of a deflecting spacecraft. Analytical approximations are commonly used in the preliminary design phase to quickly explore a large design space. However, the dynamics involved in asteroid deflection are intricate, and simple models may not capture the full complexity of the system. We examine the accuracy and limitations of analytical models compared to more accurate numerical simulations. The study reveals that encounters with perturbing bodies, even at considerable distances (of dozens of radii of the sphere of influence), can significantly perturb the asteroid's trajectory, leading to discrepancies between analytical and numerical predictions. To address this, we propose a heuristic rule to guide trajectory designers in determining the suitability of analytical models for specific deflection scenarios. By understanding the impact of distant encounters on deflection, our study equips designers with the knowledge to make informed decisions during the trajectory planning process, facilitating efficient and effective asteroid deflection missions.