arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Tue, 18 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Could a Bolide Listed in the CNEOS Database have Originated from 1I/'Oumuamua?

Authors:Adam Hibberd

Abstract: The phenomenon of 1I/'Oumuamua introduced the interstellar object (ISO) class of celestial body into the astronomical lexicon, those objects with heliocentric speeds clearly in excess of that required to parabolically escape the Solar System - and therefore of extrasolar origin. A vogue topic at this moment in time is the possibility that some ISOs may impact with Earth, where they would be observed as bolides (meteor fireballs). There is the claim for instance that a meteor listed in the NASA-JPL CNEOS (Center for Near Earth Object Studies) database, CNEOS 2014-01-08 was interstellar, and additionally four further meteors from the database with interstellar origin have been proposed. This paper postulates that the origin of yet another meteor from this catalogue, CNEOS 2017-10-09 (observed over Bolivia, South America), was interstellar, as it may have been associated with 'Oumuamua. Note there is no direct velocity data for this object available, yet its observation time corresponds to the expected arrival time of an object ejected from 'Oumuamua and intersecting Earth's orbital position.

2.Company for the ultra-high density, ultra-short period sub-Earth GJ 367 b: discovery of two additional low-mass planets at 11.5 and 34 days

Authors:Elisa Goffo, Davide Gandolfi, Jo Ann Egger, Alexander J. Mustill, Simon H. Albrecht, Teruyuki Hirano, Oleg Kochukhov, Nicola Astudillo-Defru, Oscar Barragan, Luisa M. Serrano, Artie P. Hatzes, Yann Alibert, Eike Guenther, Fei Dai, Kristine W. F. Lam, Szilárd Csizmadia, Alexis M. S. Smith, Luca Fossati, Rafael Luque, Florian Rodler, Mark L. Winther, Jakob L. Rørsted, Javier Alarcon, Xavier Bonfils, William D. Cochran, Hans J. Deeg, Jon M. Jenkins, Judith Korth, John H. Livingston, Annabella Meech, Felipe Murgas, Jaume Orell-Miquel, Hannah L. M. Osborne, Enric Palle, Carina M. Persson, Seth Redfield, George R. Ricker, Sara Seager, Roland Vanderspek, Vincent Van Eylen, Joshua N. Winn

Abstract: GJ 367 is a bright (V $\approx$ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph -- collecting 371 high-precision measurements over a baseline of nearly 3 years -- and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of $M_\mathrm{b}$ = 0.633 $\pm$ 0.050 M$_{\oplus}$ and a radius of $R_\mathrm{b}$ = 0.699 $\pm$ 0.024 R$_{\oplus}$, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of $\rho_\mathrm{b}$ = 10.2 $\pm$ 1.3 g cm$^{-3}$, i.e., 85% higher than Earth's density. We revealed the presence of two additional non transiting low-mass companions with orbital periods of $\sim$11.5 and 34 days and minimum masses of $M_\mathrm{c}\sin{i_\mathrm{c}}$ = 4.13 $\pm$ 0.36 M$_{\oplus}$ and $M_\mathrm{d}\sin{i_\mathrm{d}}$ = 6.03 $\pm$ 0.49 M$_{\oplus}$, respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of 0.91$^{+0.07}_{-0.23}$. How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet.