arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Tue, 01 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Oxygen-bearing organic molecules in comet 67P's dusty coma: first evidence for abundant heterocycles

Authors:N. Hänni, K. Altwegg, D. Baklouti, M. Combi, S. A. Fuselier, J. De Keyser, D. R. Müller, M. Rubin, S. F. Wampfler

Abstract: The puzzling complexity of terrestrial biomolecules is driving the search for complex organic molecules in the Interstellar Medium (ISM) and serves as a motivation for many in situ studies of reservoirs of extraterrestrial organics from meteorites and interplanetary dust particles (IDPs) to comets and asteroids. Comet 67P/Churyumov-Gerasimenko (67P) -- the best-studied comet to date -- has been visited and accompanied for two years by the European Space Agency's Rosetta spacecraft. Around 67P's perihelion and under dusty conditions, the high-resolution mass spectrometer on board provided a spectacular glimpse into this comet's chemical complexity. For this work, we analyzed in unprecedented detail the O-bearing organic volatiles. In a comparison of 67P's inventory to molecules detected in the ISM, in other comets, and in Soluble Organic Matter (SOM) extracted from the Murchison meteorite, we also highlight the (pre)biotic relevance of different chemical groups of species. We report first evidence for abundant extraterrestrial O-bearing heterocycles (with abundances relative to methanol often on the order of 10% with a relative error margin of 30-50%) and various representatives of other molecule classes such as carboxylic acids and esters, aldehydes, ketones, and alcohols. Like with the pure hydrocarbons, some hydrogenated forms seem to be dominant over their dehydrogenated counterparts. An interesting example is tetrahydrofuran (THF) as it might be a more promising candidate for searches in the ISM than the long-sought furan itself. Our findings not only support and guide future efforts to investigate the origins of chemical complexity in space, but also they strongly encourage studies of, e.g., the ratios of unbranched vs. branched and hydrogenated vs. dehydrogenated species in astrophysical ice analogs in the laboratory as well as by modeling.

2.Extending Lunar Impact Flash Observations into the Daytime with Short-Wave Infrared

Authors:Daniel Sheward, Marco Delbo, Chrysa Avdellidou, Anthony Cook, Philippe Lognonné, Edhah Munabari, Luigi Zanatta, Antonio Mercatali, Silvano Delbo, Paolo Tanga

Abstract: Lunar impact flash (LIF) observations typically occur in R, I, or unfiltered light, and are only possible during night, targeting the night side of a 10-60% illumination Moon, while >10{\deg} above the observers horizon. This severely limits the potential to observe, and therefore the number of lower occurrence, high energy impacts observed is reduced. By shifting from the typically used wavelengths to the J-Band Short-Wave Infrared, the greater spectral radiance for the most common temperature (2750 K) of LIFs and darker skies at these wavelengths enables LIF monitoring to occur during the daytime, and at greater lunar illumination phases than currently possible. Using a 40.0 cm f/4.5 Newtonian reflector with Ninox 640SU camera and J-band filter, we observed several stars and lunar nightside at various times to assess the theoretical limits of the system. We then performed LIF observations during both day and night to maximise the chances of observing a confirmed LIF to verify the methods. We detected 61 >5{\sigma} events, from which 33 candidate LIF events could not be discounted as false positives. One event was confirmed by multi-frame detection, and by independent observers observing in visible light. While this LIF was observed during the night, the observed signal can be used to calculate the equivalent Signal-to-Noise ratio for a similar daytime event. The threshold for daylight LIF detection was found to be between Jmag=+3.4+-0.18 and Jmag=+5.6+-0.18 (Vmag=+4.5 and Vmag=+6.7 respectively at 2750 K). This represents an increase in opportunity to observe LIFs by almost 500%.

3.The Role of Magma Oceans in Maintaining Surface Water on Rocky Planets Orbiting M-Dwarfs

Authors:Keavin Moore, Nicolas B. Cowan, Charles-Édouard Boukaré

Abstract: Earth-like planets orbiting M-dwarf stars, M-Earths, are currently the best targets to search for signatures of life. Life as we know it requires water. The habitability of M-Earths is jeopardized by water loss to space: high flux from young M-dwarf stars can drive the loss of 3--20 Earth oceans from otherwise habitable planets. We develop a 0-D box model for Earth-mass terrestrial exoplanets, orbiting within the habitable zone, which tracks water loss to space and exchange between reservoirs during an early surface magma ocean phase and the longer deep-water cycling phase. A key feature is the duration of the surface magma ocean, assumed concurrent with the runaway greenhouse. This timescale can discriminate between desiccated planets, planets with desiccated mantles but substantial surface water, and planets with significant water sequestered in the mantle. A longer-lived surface magma ocean helps M-Earths retain water: dissolution of water in the magma provides a barrier against significant loss to space during the earliest, most active stage of the host M-dwarf, depending on the water saturation limit of the magma. Although a short-lived basal magma ocean can be beneficial to surface habitability, a long-lived basal magma ocean may sequester significant water in the mantle at the detriment of surface habitability. We find that magma oceans and deep-water cycling can maintain or recover habitable surface conditions on Earth-like planets at the inner edge of the habitable zone around late M-dwarf stars -- these planets would otherwise be desiccated if they form with less than ${\sim}$10 terrestrial oceans of water.

4.Interior dynamics of super-Earth 55 Cancri e

Authors:Tobias G. Meier, Dan J. Bower, Tim Lichtenberg, Mark Hammond, Paul J. Tackley

Abstract: The ultra-short-period super-Earth 55 Cancri e has a measured radius of 1.8 Earth radii. Previous thermal phase curve observations suggest a strong temperature contrast between the dayside and nightside of around 1000 K with the hottest point shifted $41\pm12$ degrees east from the substellar point, indicating some degree of heat circulation. The dayside (and potentially even the nightside) is hot enough to harbour a magma ocean. We use results from general circulation models (GCMs) of atmospheres to constrain the surface temperature contrasts. There is still a large uncertainty on the vigour and style of mantle convection in super-Earths, especially those that experience stellar irradiation large enough to harbour a magma ocean. In this work, we aim to constrain the mantle dynamics of the tidally locked lava world 55 Cancri e. Using the surface temperature contrasts as boundary condition, we model the mantle flow of 55 Cancri e using 2D mantle convection simulations and investigate how the convection regimes are affected by the different climate models. We find that large super-plumes form on the dayside if that hemisphere is covered by a magma ocean and the nightside remains solid or only partially molten. Cold material descends into the deep interior on the nightside, but no strong downwellings form. In some cases, the super-plume also moves several tens of degrees towards the terminator. A convective regime where the upwelling is preferentially on the dayside might lead to preferential outgassing on that hemisphere which could lead to the build-up of atmospheric species that could be chemically distinct from the nightside.

5.Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE) I: Using Grid-Based Nested Sampling in Coronagraphy Observation Simulations for H2O

Authors:Natasha Latouf, Avi Mandell, Geronimo Villanueva, Michael Moore, Nicholas Susemiehl, Vincent Kofman, Michael Himes

Abstract: Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examing the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (SNR) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5-1 micron). We use a pre-constructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate the produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimix a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective signal-to-noise ratio (SNR) of the data. We present our findings of H2O detectability as functions of SNR, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2o can be detected down to 0.74 micron with moderate-SNR data for abundances at the upper end of Earth's presumed historical values, while at 0.9 micron, detectability is possible with low-SNR data at modern Earth abundances of H2O.