arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Fri, 25 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Impact of hot exozodiacal dust on the polarimetric analysis of close-in exoplanets

Authors:Kevin Ollmann, Sebastian Wolf, Moritz Lietzow, Thomas A. Stuber

Abstract: Hot exozodiacal dust (HEZD) found around main-sequence stars through interferometric observations in the photometric bands H to L is located close to the dust sublimation radius, potentially at orbital radii comparable to those of close-in exoplanets. Consequently, HEZD has a potential influence on the analysis of the scattered-light polarization of close-in exoplanets and vice versa. We analyze the impact of HEZD on the polarimetric characterization of close-in exoplanets. This study is motivated in particular by the recently proven feasibility of exoplanet polarimetry. Applying the 3D Monte Carlo radiative transfer code POLARIS in an extended and optimized version for radiative transfer in exoplanetary atmospheres and an analytical tool for modeling the HEZD, we simulated and compared the polarization characteristics of the wavelength-dependent scattered-light polarization of HEZD and close-in exoplanets. The varied parameters are the planetary phase angle ($0^\circ-180^\circ$), the dust grain radius ($0.02\ \mu$m $- \ 10\ \mu$m), the HEZD mass ($10^{-10}$$\rm{M}_{\oplus}$ $-\ 10^{-8}$$\rm{M}_{\oplus}$), the orbital inclination ($0^\circ-90^\circ$), the composition of the planetary atmosphere (Mie and Rayleigh scattering atmosphere), the orbital radius of the HEZD ($0.02$ au $-\ 0.4$ au), and the planetary orbital radius ($0.01$ au $-\ 0.05$ au). The dust grain radius has the strongest influence on the polarimetric analysis due to its significant impact on the wavelength-dependent polarization characteristics and the total order of magnitude of the scattered-light polarization. In certain scenarios, the scattered-light polarization of the HEZD even exceeds that of the close-in exoplanet.

2.A compact multi-planet system transiting HIP 29442 (TOI-469) discovered by TESS and ESPRESSO. Radial velocities lead to the detection of transits with low signal-to-noise ratio

Authors:M. Damasso, J. Rodrigues, A. Castro-González, B. Lavie, J. Davoult, M. R. Zapatero Osorio, J. Dou, S. G. Sousa, J. E. Owen, P. Sossi, V. Adibekyan, H. Osborn, Z. Leinhardt, Y. Alibert, C. Lovis, E. Delgado Mena, A. Sozzetti, S. C. C. Barros, D. Bossini, C. Ziegler, D. R. Ciardi, E. C. Matthews, P. J. Carter, J. Lillo-Box, A. Suárez Mascareño, S. Cristiani, F. Pepe, R. Rebolo, N. C. Santos, C. Allende Prieto, S. Benatti, F. Bouchy, C. Briceño, P. Di Marcantonio, V. D'Odorico, X. Dumusque, J. A. Egger, D. Ehrenreich, J. Faria, P. Figueira, R. Génova Santos, E. J. Gonzales, J. I. González Hernández, N. Law, G. Lo Curto, A. W. Mann, C. J. A. P. Martins, A. Mehner, G. Micela, P. Molaro, N. J. Nunes, E. Palle, E. Poretti, J. E. Schlieder, S. Udry

Abstract: We followed-up with ESPRESSO the K0V star HIP 29442 (TOI-469), already known to host a validated sub-Neptune companion TOI-469.01. We aim to verify the planetary nature of TOI-469.01. We modelled radial velocity and photometric time series to measure the dynamical mass, radius, and ephemeris, and to characterise the internal structure and composition of TOI-469.01. We confirmed the planetary nature of TOI-469.01. Thanks to ESPRESSO we discovered two additional close-in companions. We also detected their low signal-to-noise transit signals in the TESS light curve. HIP 29442 is a compact multi-planet system, and the three planets have orbital periods $P_{\rm orb, b}=13.63083\pm0.00003$, $P_{\rm orb, c}=3.53796\pm0.00003$, and $P_{\rm orb, d}=6.42975^{+0.00009}_{-0.00010}$ days, and we measured their masses with high precision: $m_{\rm p, b}=9.6\pm0.8~M_{\oplus}$, $m_{\rm p, c}=4.5\pm0.3~M_{\oplus}$, and $m_{\rm p, d}=5.1\pm0.4~M_{\oplus}$. We measured radii and bulk densities of all the planets (the 3$\sigma$ confidence intervals are shown in parenthesis): $R_{\rm p, b}=3.48^{+0.07 (+0.19)}_{-0.08 (-0.28)} ~R_{\oplus}$ and $\rho_{\rm p, b}=1.3\pm0.2 (0.3) g~cm^{-3}$; $R_{\rm p, c}=1.58^{+0.10 (+0.30)}_{-0.11 (-0.34)}~R_{\oplus}$ and $\rho_{\rm p, c}=6.3^{+1.7 (+6.0)}_{-1.3 (-2.7)} g~cm^{-3}$; $R_{\rm p, d}=1.37\pm0.11^{(+0.32)}_{(-0.43)}~R_{\oplus}$ and $\rho_{\rm p, d}=11.0^{+3.4 (+21.0)}_{-2.4 (-6.3)} g~cm^{-3}$. We used the more conservative 3$\sigma$ confidence intervals for the radii as input to the interior structure modelling. We find that HIP 29442 $b$ appears as a typical sub-Neptune, likely surrounded by a gas layer of pure H-He with a mass of $0.27^{+0.24}_{-0.17} M_{\oplus}$ and a thickness of $1.4\pm0.5 R_{\oplus}$. For the innermost companions HIP 29442 $c$ HIP 29442 $d$, the model supports an Earth-like composition.