arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Tue, 11 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Confirmation of an He I evaporating atmosphere around the 650-Myr-old sub-Neptune HD235088 b (TOI-1430 b) with CARMENES

Authors:J. Orell-Miquel, M. Lampón, M. López-Puertas, M. Mallorquín, F. Murgas, A. Peláez-Torres, E. Pallé, E. Esparza-Borge, J. Sanz-Forcada, H. M. Tabernero, L. Nortmann, E. Nagel, H. Parviainen, M. R. Zapatero Osorio, J. A. Caballero, S. Czesla, C. Cifuentes, G. Morello, A. Quirrenbach, P. J. Amado, A. Fernández-Martín, A. Fukui, Th. Henning, K. Kawauchi, J. P. de Leon, K. Molaverdikhani, D. Montes, N. Narita, A. Reiners, I. Ribas, A. Sánchez-López, A. Schweitzer, M. Stangret, F. Yan

Abstract: HD235088 (TOI-1430) is a young star known to host a sub-Neptune-sized planet candidate. We validated the planetary nature of HD235088 b with multiband photometry, refined its planetary parameters, and obtained a new age estimate of the host star, placing it at 600-800 Myr. Previous spectroscopic observations of a single transit detected an excess absorption of He I coincident in time with the planet candidate transit. Here, we confirm the presence of He I in the atmosphere of HD235088 b with one transit observed with CARMENES. We also detected hints of variability in the strength of the helium signal, with an absorption of $-$0.91$\pm$0.11%, which is slightly deeper (2$\sigma$) than the previous measurement. Furthermore, we simulated the He I signal with a spherically symmetric 1D hydrodynamic model, finding that the upper atmosphere of HD235088 b escapes hydrodynamically with a significant mass loss rate of (1.5-5) $\times$10$^{10}$g s$^{-1}$, in a relatively cold outflow, with $T$=3125$\pm$375 K, in the photon-limited escape regime. HD235088 b ($R_{p}$ = 2.045$\pm$0.075 R$_{\oplus}$) is the smallest planet found to date with a solid atmospheric detection - not just of He I but any other atom or molecule. This positions it a benchmark planet for further analyses of evolving young sub-Neptune atmospheres.

2.Accreting luminous low-mass planets escape from migration traps at pressure bumps

Authors:O. Chrenko, R. O. Chametla

Abstract: We investigate the migration of Mars- to super-Earth-sized planets in the vicinity of a pressure bump in a 3D radiative protoplanetary disc while accounting for the effect of accretion heat release. Pressure bumps have often been assumed to act as efficient migration traps, but we show that the situation changes when the thermal forces are taken into account. Our simulations reveal that for planetary masses $\lesssim$$2\,M_{\oplus}$, once their luminosity exceeds the critical value predicted by linear theory, thermal driving causes their orbits to become eccentric, quenching the positive corotation torque responsible for the migration trap. As a result, planets continue migrating inwards past the pressure bump. Additionally, we find that planets that remain circular and evolve in the super-Keplerian region of the bump exhibit a reversed asymmetry of their thermal lobes, with the heating torque having an opposite (negative) sign compared to the standard circular case, thus leading to inward migration as well. We also demonstrate that the super-critical luminosities of planets in question can be reached through the accretion of pebbles accumulating in the bump. Our findings have implications for planet formation scenarios that rely on the existence of migration traps at pressure bumps, as the bumps may repeatedly spawn inward-migrating low-mass embryos rather than harbouring newborn planets until they become massive.

3.TESS discovers a super-Earth orbiting the M dwarf star TOI-1680

Authors:M. Ghachoui, A. Soubkiou, R. D. Wells, B. V. Rackham, A. H. M. J. Triaud, D. Sebastian, S. Giacalone, K. G. Stassun, D. R. Ciardi, K. A. Collins, A. Liu, Y. Gómez Maqueo Chew, M. Gillon, Z. Benkhaldoun, L. Delrez, J. D. Eastman, O. Demangeon, K. Barkaoui, A. Burdanov, B. -O. Demory, J. de Wit, G. Dransfield, E. Ducrot, L. Garcia, Y. Gómez Maqueo Chew, M. A. Gómez-Muñoz, M. J. Hooton, E. Jehin, C. A. Murray, P. P. Pedersen, F. J. Pozuelos, D. Queloz, L. Sabin, N. Schanche, M. Timmermans, E. J. Gonzales, C. D. Dressing, C. Aganze, A. J. Burgasser, R. Gerasimov, C. Hsu, C. A. Theissen, D. Charbonneau, J. M. Jenkins, D. W. Latham, G. Ricker, S. Seager, A. Shporer, J. D. Twicken, R. Vanderspek, J. N. Winn, K. I. Collins, A. Fukui, T. Gan, N. Narita, R. P. Schwarz

Abstract: We report the discovery by the TESS mission of a super-Earth on a 4.8-d orbit around an inactive M4.5 dwarf (TOI-1680) and its validation with ground-based facilities. The host star is located 37.14 pc away, and it has a radius of 0.2100+/-0.0064 R_sun, a mass of 0.1800+/-0.0044 M_sun and an effective temperature of 3211+/-100 K. We validate and characterize the planet using TESS data, ground-based multi-wavelength photometry from TRAPPIST, SPECULOOS and LCO, and high-resolution AO observations from Keck/NIRC2 and Shane. Our analyses determine the planet to have a radius of 1.466+0.063/-0.049 R_earth and an equilibrium temperature of 404+/-14 K, assuming no albedo and perfect heat redistribution. Assuming a mass based on mass-radius relationships, this planet is a promising target for atmospheric characterization with the James Webb Space Telescope (JWST).