arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Wed, 28 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Making hot Jupiters in stellar clusters II: efficient formation in binary systems

Authors:Daohai Li, Alexander J. Mustill, Melvyn B. Davies, Yan-Xiang Gong

Abstract: Observations suggested that the occurrence rate of hot Jupiters (HJs) in open clusters is largely consistent with the field ($\sim1\%$) but in the binary-rich cluster M67, the rate is $\sim5\%$. How does the cluster environment boost HJ formation via the high-eccentricity tidal migration initiated by the extreme-amplitude von Zeipel-Lidov-Kozai (XZKL) mechanism forced by a companion star? Our analytical treatment shows that the cluster's collective gravitational potential alters the companion's orbit slowly, which may render the star-planet-companion configuration XZKL-favourable, a phenomenon only possible for very wide binaries. We have also performed direct Gyr $N$-body simulations of the star cluster evolution and XZKL of planets' orbit around member stars. We find that an initially-single star may acquire a companion star via stellar scattering and the companion may enable XZKL in the planets' orbit. Planets around an initially-binary star may also be XZKL-activated by the companion. In both scenarios, the companion's orbit has likely been significantly changed by star scattering and the cluster potential before XZKL occurs in the planets' orbits. Across different cluster models, 0.8\%-3\% of the planets orbiting initially-single stars have experienced XZKL while the fraction is 2\%-26\% for initially-binary stars. Notably, the ejection fraction is similar to or appreciably smaller than XZKL. Around a star that is binary at 1 Gyr, 13\%-32\% of its planets have undergone XZKL, and combined with single stars, the overall XZKL fraction is 3\%-21\%, most affected by the cluster binarity. If 10\% of the stars in M67 host a giant planet, our model predicts an HJ occurrence rate of $\sim1\%$. We suggest that HJ surveys target old, high-binarity, not-too-dense open clusters and prioritise wide binaries to maximise HJ yield.

2.Fully coupled photochemistry of the deuterated ionosphere of Mars and its effects on escape of H and D

Authors:Eryn M. Cangi, Michael S. Chaffin, Roger V. Yelle, Bethan S. Gregory, Justin Deighan

Abstract: Although deuterium (D) on Mars has received substantial attention, the deuterated ionosphere remains relatively unstudied. This means that we also know very little about non-thermal D escape from Mars, since it is primarily driven by excess energy imparted to atoms produced in ion-neutral reactions. Most D escape from Mars is expected to be non-thermal, highlighting a gap in our understanding of water loss from Mars. In this work, we set out to fill this knowledge gap. To accomplish our goals, we use an upgraded 1D photochemical model that fully couples ions and neutrals and does not assume photochemical equilibrium. To our knowledge, such a model has not been applied to Mars previously. We model the atmosphere during solar minimum, mean, and maximum, and find that the deuterated ionosphere behaves similarly to the H-bearing ionosphere, but that non-thermal escape on the order of 8000-9000 cm$^{-2}$s$^{-1}$ dominates atomic D loss under all solar conditions. The total fractionation factor, $f$, is $f=0.04$--0.07, and integrated water loss is 147--158 m GEL. This is still less than geomorphological estimates. Deuterated ions at Mars are likely difficult to measure with current techniques due to low densities and mass degeneracies with more abundant H ions. Future missions wishing to measure the deuterated ionosphere in situ will need to develop innovative techniques to do so.