arXiv daily

Earth and Planetary Astrophysics (astro-ph.EP)

Tue, 25 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023
1.Systematic KMTNet Planetary Anomaly Search. X. Complete Sample of 2017 Prime-Field Planets

Authors:Yoon-Hyun Ryu, Andrzej Udalski, Jennifer C. Yee, Weicheng Zang, Yossi Shvartzvald, Cheongho Han, Andrew Gould, Michael D. Albrow, Sun-Ju Chung, Kyu-Ha Hwang, Youn Kil Jung, In-Gu Shin, Hongjing Yang, Sang-Mok Cha, Dong-Jin Kim, Seung-Lee Kim, Chung-Uk Lee, Dong-Joo Lee, Yongseok Lee, Byeong-Gon Park, Richard W. Pogge, Hanyue Wang, Przemek Mróz, Michał K. Szymański, Jan Skowron, Radek Poleski, Igor Soszyński, Paweł Pietrukowicz, Szymon Kozłowski, Krzysztof Ulaczyk, Krzysztof A. Rybicki, Patryk Iwanek, Marcin Wrona, Charles Beichman, Geoffry Bryden, Sean Carey, Calen B. Henderson, Sebastiano Calchi Novati, Wei Zhu, Savannah Jacklin, Matthew T. Penny

Abstract: We complete the analysis of planetary candidates found by the KMT AnomalyFinder for the 2017 prime fields that cover $\sim 13\,{\rm deg}^2$. We report 3 unambiguous planets: OGLE-2017-BLG-0640, OGLE-2017-BLG-1275, and OGLE-2017-BLG-1237. The first two of these were not previously identified, while the last was not previously published due to technical complications induced by a nearby variable. We further report that a fourth anomalous event, the previously recognized OGLE-2017-BLG-1777, is very likely to be planetary, although its light curve requires unusually complex modeling because the lens and source both have orbiting companions. One of the 3 unambiguous planets, OGLE-2017-BLG-1275 is the first AnomalyFinder discovery that has a {\it Spitzer} microlens parallax measurement, $\pi_E \sim 0.045\pm0.015$, implying that this planetary system almost certainly lies in the Galactic bulge. In the order listed, the four planetary events have planet-host mass ratios $q$, and normalized projected separations $s$, of $(\log q,s)$ = $(-2.31,0.61)$, $(-2.06,0.63/1.09)$, $(-2.10,1.04)$, and $(-2.86,0.72)$. Combined with previously published events, the 2017 AnomalyFinder prime fields contain 11 unambiguous planets with well-measured $q$ and one very likely candidate, of which 3 are AnomalyFinder discoveries. In addition to these 12, there are three other unambiguous planets with large uncertainties in $q$.

2.Spirals and clumps in V960 Mon: signs of planet formation via gravitational instability around an FU Ori star?

Authors:P. Weber, S. Pérez, A. Zurlo, J. Miley, A. Hales, L. Cieza, D. Principe, M. Cárcamo, A. Garufi, Á. Kóspál, M. Takami, J. Kastner, Z. Zhu, J. Williams

Abstract: The formation of giant planets has traditionally been divided into two pathways: core accretion and gravitational instability. However, in recent years, gravitational instability has become less favored, primarily due to the scarcity of observations of fragmented protoplanetary disks around young stars and low occurrence rate of massive planets on very wide orbits. In this study, we present a SPHERE/IRDIS polarized light observation of the young outbursting object V960 Mon. The image reveals a vast structure of intricately shaped scattered light with several spiral arms. This finding motivated a re-analysis of archival ALMA 1.3 mm data acquired just two years after the onset of the outburst of V960 Mon. In these data, we discover several clumps of continuum emission aligned along a spiral arm that coincides with the scattered light structure. We interpret the localized emission as fragments formed from a spiral arm under gravitational collapse. Estimating the mass of solids within these clumps to be of several Earth masses, we suggest this observation to be the first evidence of gravitational instability occurring on planetary scales. This study discusses the significance of this finding for planet formation and its potential connection with the outbursting state of V960 Mon.

3.Suppression of Chaotic Motion of Tethered Satellite Systems Using Tether Length Control

Authors:Francisco J. T. Salazar, Antonio F. B. A. Prado

Abstract: This study focuses on attitude and control motion of two bodies (a base-satellite and a sub-satellite) connected by an inextensible and massless tether in a circular orbit under the influence of the Earths gravitational force. The base-satellite is assumed to be far more heavier than the sub-satellite. In such cases, the base-satellite is regarded as the reference spacecraft. Because of the complexity of the problem, no thrusters on the sub-satellite are considered, and the effect of atmospheric drag, Earths oblateness, and electrodynamic force on the spacecraft are neglected.

4.Earth-based Stellar Occultation Predictions for Jupiter, Saturn, Uranus, Neptune, Titan, and Triton: 2023-2050

Authors:Richard G. French, Damya Souami

Abstract: In support of studies of decadal-timescale evolution of outer solar system atmospheres and ring systems, we present detailed Earth-based stellar occultation predictions for Jupiter, Saturn, Uranus, Neptune, Titan, and Triton for 2023-2050, based on the Gaia DR3 star catalog and near-IR K-band photometry from the 2MASS catalog. We tabulate the number of observable events by year and magnitude interval, reflecting the highly variable frequency of high-SNR events depending on the target's path relative to the star-rich regions of the Milky Way. We identify regions on Earth where each event is potentially observable, and for atmospheric occultations, we determine the latitude of the ingress and egress events. For Saturn, Uranus, and Neptune, we also compute the predicted ring occultation event times. We present representative subsets of the predicted events and highlights particularly promising events. Jupiter occultations with K $\leq$7 occur at a cadence of about one per year, with bright events at higher frequency in 2031 and 2043. Saturn occultations are much rarer, with only two predicted events with K $\leq$5 in 2032 and 2047. Ten Uranus ring occultations are predicted with K$\leq$10 for the period 2023 to 2050. Neptune traverses star-poor regions of the sky until 2068, resulting in only 13 predicted occultations for K$\leq$12 between 2023 and 2050. Titan has several high-SNR events between 2029--2031, whereas Triton is limited to a total of 22 occultations with K$\leq$15 between 2023 and 2050. Details of all predicted events are included in the Supplementary Online Material.

5.Revised orbits of the two nearest Jupiters

Authors:Fabo Feng, R. Paul Butler, Steven S. Vogt, Jennifer Burt, Bradford Holden, Yicheng Rui

Abstract: With its near-to-mid-infrared high contrast imaging capabilities, JWST is ushering us into a golden age of directly imaging Jupiter-like planets. As the two closest cold Jupiters, $\varepsilon$ Ind A b and $\varepsilon$ Eridani b have sufficiently wide orbits and adequate infrared emissions to be detected by JWST. To detect more Jupiter-like planets for direct imaging, we develop a GOST-based method to analyze radial velocity data and multiple Gaia data releases simultaneously. Without approximating instantaneous astrometry by catalog astrometry, this approach enables the use of multiple Gaia data releases for detection of both short-period and long-period planets. We determine a mass of $2.96_{-0.38}^{+0.41}$ $M_{\rm Jup}$ and a period of $42.92_{-4.09}^{+6.38}$ yr for $\varepsilon$ Ind A b. We also find a mass of $0.76_{-0.11}^{+0.14}$ $M_{\rm Jup}$, a period of $7.36_{-0.05}^{+0.04}$ yr, and an eccentricity of 0.26$_{-0.04}^{+0.04}$ for $\varepsilon$ Eridani b. The eccentricity differs from that given by some previous solutions probably due to the sensitivity of orbital eccentricity to noise modeling. Our work refines the constraints on orbits and masses of the two nearest Jupiters and demonstrate the feasibility of using multiple Gaia data releases to constrain Jupiter-like planets.