arXiv daily

Cryptography and Security (cs.CR)

Wed, 13 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.DP-Forward: Fine-tuning and Inference on Language Models with Differential Privacy in Forward Pass

Authors:Minxin Du, Xiang Yue, Sherman S. M. Chow, Tianhao Wang, Chenyu Huang, Huan Sun

Abstract: Differentially private stochastic gradient descent (DP-SGD) adds noise to gradients in back-propagation, safeguarding training data from privacy leakage, particularly membership inference. It fails to cover (inference-time) threats like embedding inversion and sensitive attribute inference. It is also costly in storage and computation when used to fine-tune large pre-trained language models (LMs). We propose DP-Forward, which directly perturbs embedding matrices in the forward pass of LMs. It satisfies stringent local DP requirements for training and inference data. To instantiate it using the smallest matrix-valued noise, we devise an analytic matrix Gaussian~mechanism (aMGM) by drawing possibly non-i.i.d. noise from a matrix Gaussian distribution. We then investigate perturbing outputs from different hidden (sub-)layers of LMs with aMGM noises. Its utility on three typical tasks almost hits the non-private baseline and outperforms DP-SGD by up to 7.7pp at a moderate privacy level. It saves 3$\times$ time and memory costs compared to DP-SGD with the latest high-speed library. It also reduces the average success rates of embedding inversion and sensitive attribute inference by up to 88pp and 41pp, respectively, whereas DP-SGD fails.

2.ZKROWNN: Zero Knowledge Right of Ownership for Neural Networks

Authors:Nojan Sheybani, Zahra Ghodsi, Ritvik Kapila, Farinaz Koushanfar

Abstract: Training contemporary AI models requires investment in procuring learning data and computing resources, making the models intellectual property of the owners. Popular model watermarking solutions rely on key input triggers for detection; the keys have to be kept private to prevent discovery, forging, and removal of the hidden signatures. We present ZKROWNN, the first automated end-to-end framework utilizing Zero-Knowledge Proofs (ZKP) that enable an entity to validate their ownership of a model, while preserving the privacy of the watermarks. ZKROWNN permits a third party client to verify model ownership in less than a second, requiring as little as a few KBs of communication.

3.Robustness for Spectral Clustering of General Graphs under Local Differential Privacy

Authors:Sayan Mukherjee, Vorapong Suppakitpaisarn

Abstract: Spectral clustering is a widely used algorithm to find clusters in networks. Several researchers have studied the stability of spectral clustering under local differential privacy with the additional assumption that the underlying networks are generated from the stochastic block model (SBM). However, we argue that this assumption is too restrictive since social networks do not originate from the SBM. Thus, delve into an analysis for general graphs in this work. Our primary focus is the edge flipping method -- a common technique for protecting local differential privacy. On a positive side, our findings suggest that even when the edges of an $n$-vertex graph satisfying some reasonable well-clustering assumptions are flipped with a probability of $O(\log n/n)$, the clustering outcomes are largely consistent. Empirical tests further corroborate these theoretical findings. Conversely, although clustering outcomes have been stable for dense and well-clustered graphs produced from the SBM, we show that in general, spectral clustering may yield highly erratic results on certain dense and well-clustered graphs when the flipping probability is $\omega(\log n/n)$. This indicates that the best privacy budget obtainable for general graphs is $\Theta(\log n)$.

4.PhantomSound: Black-Box, Query-Efficient Audio Adversarial Attack via Split-Second Phoneme Injection

Authors:Hanqing Guo, Guangjing Wang, Yuanda Wang, Bocheng Chen, Qiben Yan, Li Xiao

Abstract: In this paper, we propose PhantomSound, a query-efficient black-box attack toward voice assistants. Existing black-box adversarial attacks on voice assistants either apply substitution models or leverage the intermediate model output to estimate the gradients for crafting adversarial audio samples. However, these attack approaches require a significant amount of queries with a lengthy training stage. PhantomSound leverages the decision-based attack to produce effective adversarial audios, and reduces the number of queries by optimizing the gradient estimation. In the experiments, we perform our attack against 4 different speech-to-text APIs under 3 real-world scenarios to demonstrate the real-time attack impact. The results show that PhantomSound is practical and robust in attacking 5 popular commercial voice controllable devices over the air, and is able to bypass 3 liveness detection mechanisms with >95% success rate. The benchmark result shows that PhantomSound can generate adversarial examples and launch the attack in a few minutes. We significantly enhance the query efficiency and reduce the cost of a successful untargeted and targeted adversarial attack by 93.1% and 65.5% compared with the state-of-the-art black-box attacks, using merely ~300 queries (~5 minutes) and ~1,500 queries (~25 minutes), respectively.

5.MASTERKEY: Practical Backdoor Attack Against Speaker Verification Systems

Authors:Hanqing Guo, Xun Chen, Junfeng Guo, Li Xiao, Qiben Yan

Abstract: Speaker Verification (SV) is widely deployed in mobile systems to authenticate legitimate users by using their voice traits. In this work, we propose a backdoor attack MASTERKEY, to compromise the SV models. Different from previous attacks, we focus on a real-world practical setting where the attacker possesses no knowledge of the intended victim. To design MASTERKEY, we investigate the limitation of existing poisoning attacks against unseen targets. Then, we optimize a universal backdoor that is capable of attacking arbitrary targets. Next, we embed the speaker's characteristics and semantics information into the backdoor, making it imperceptible. Finally, we estimate the channel distortion and integrate it into the backdoor. We validate our attack on 6 popular SV models. Specifically, we poison a total of 53 models and use our trigger to attack 16,430 enrolled speakers, composed of 310 target speakers enrolled in 53 poisoned models. Our attack achieves 100% attack success rate with a 15% poison rate. By decreasing the poison rate to 3%, the attack success rate remains around 50%. We validate our attack in 3 real-world scenarios and successfully demonstrate the attack through both over-the-air and over-the-telephony-line scenarios.

6.Communication-Efficient Laplace Mechanism for Differential Privacy via Random Quantization

Authors:Ali Moradi Shahmiri, Chih Wei Ling, Cheuk Ting Li

Abstract: We propose the first method that realizes the Laplace mechanism exactly (i.e., a Laplace noise is added to the data) that requires only a finite amount of communication (whereas the original Laplace mechanism requires the transmission of a real number) while guaranteeing privacy against the server and database. Our mechanism can serve as a drop-in replacement for local or centralized differential privacy applications where the Laplace mechanism is used. Our mechanism is constructed using a random quantization technique. Unlike the simple and prevalent Laplace-mechanism-then-quantize approach, the quantization in our mechanism does not result in any distortion or degradation of utility. Unlike existing dithered quantization and channel simulation schemes for simulating additive Laplacian noise, our mechanism guarantees privacy not only against the database and downstream, but also against the honest but curious server which attempts to decode the data using the dither signals.

7.Cryptography: Against AI and QAI Odds

Authors:Sheetal Harris, Hassan Jalil Hadi, Umer Zukaib

Abstract: Artificial Intelligence (AI) presents prodigious technological prospects for development, however, all that glitters is not gold! The cyber-world faces the worst nightmare with the advent of AI and quantum computers. Together with Quantum Artificial Intelligence (QAI), they pose a catastrophic threat to modern cryptography. It would also increase the capability of cryptanalysts manifold, with its built-in persistent and extensive predictive intelligence. This prediction ability incapacitates the constrained message space in device cryptography. With the comparison of these assumptions and the intercepted ciphertext, the code-cracking process will considerably accelerate. Before the vigorous and robust developments in AI, we have never faced and never had to prepare for such a plaintext-originating attack. The supremacy of AI can be challenged by creating ciphertexts that would give the AI attacker erroneous responses stymied by randomness and misdirect them. AI threat is deterred by deviating from the conventional use of small, known-size keys and pattern-loaded ciphers. The strategy is vested in implementing larger secret size keys, supplemented by ad-hoc unilateral randomness of unbound limitations and a pattern-devoid technique. The very large key size can be handled with low processing and computational burden to achieve desired unicity distances. The strategy against AI odds is feasible by implementing non-algorithmic randomness, large and inexpensive memory chips, and wide-area communication networks. The strength of AI, i.e., randomness and pattern detection can be used to generate highly optimized ciphers and algorithms. These pattern-devoid, randomness-rich ciphers also provide a timely and plausible solution for NIST's proactive approach toward the quantum challenge.

8.A Comprehensive Analysis of the Role of Artificial Intelligence and Machine Learning in Modern Digital Forensics and Incident Response

Authors:Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane, Vassil Vassilev

Abstract: In the dynamic landscape of digital forensics, the integration of Artificial Intelligence (AI) and Machine Learning (ML) stands as a transformative technology, poised to amplify the efficiency and precision of digital forensics investigations. However, the use of ML and AI in digital forensics is still in its nascent stages. As a result, this paper gives a thorough and in-depth analysis that goes beyond a simple survey and review. The goal is to look closely at how AI and ML techniques are used in digital forensics and incident response. This research explores cutting-edge research initiatives that cross domains such as data collection and recovery, the intricate reconstruction of cybercrime timelines, robust big data analysis, pattern recognition, safeguarding the chain of custody, and orchestrating responsive strategies to hacking incidents. This endeavour digs far beneath the surface to unearth the intricate ways AI-driven methodologies are shaping these crucial facets of digital forensics practice. While the promise of AI in digital forensics is evident, the challenges arising from increasing database sizes and evolving criminal tactics necessitate ongoing collaborative research and refinement within the digital forensics profession. This study examines the contributions, limitations, and gaps in the existing research, shedding light on the potential and limitations of AI and ML techniques. By exploring these different research areas, we highlight the critical need for strategic planning, continual research, and development to unlock AI's full potential in digital forensics and incident response. Ultimately, this paper underscores the significance of AI and ML integration in digital forensics, offering insights into their benefits, drawbacks, and broader implications for tackling modern cyber threats.