arXiv daily

Cryptography and Security (cs.CR)

Fri, 16 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Lost and not Found: An Investigation of Recovery Methods for Multi-Factor Authentication

Authors:Sabrina Amft, Sandra Höltervennhoff, Nicolas Huaman, Alexander Krause, Lucy Simko, Yasemin Acar, Sascha Fahl

Abstract: Multi-Factor Authentication is intended to strengthen the security of password-based authentication by adding another factor, such as hardware tokens or one-time passwords using mobile apps. However, this increased authentication security comes with potential drawbacks that can lead to account and asset loss. If users lose access to their additional authentication factors for any reason, they will be locked out of their accounts. Consequently, services that provide Multi-Factor Authentication should deploy procedures to allow their users to recover from losing access to their additional factor that are both secure and easy-to-use. To the best of our knowledge, we are the first to first-hand investigate the security and user experience of deployed Multi-Factor Authentication recovery procedures. We first evaluate the official help and support pages of 1,303 websites that provide Multi-Factor Authentication and collect documented information about their recovery procedures. Second, we select a subset of 71 websites, create accounts, set up Multi-Factor Authentication, and perform an in-depth investigation of their recovery procedure security and user experience. We find that many websites deploy insecure Multi-Factor Authentication recovery procedures and allowed us to circumvent and disable Multi-Factor Authentication when having access to the accounts' associated email addresses. Furthermore, we commonly observed discrepancies between our in-depth analysis and the official help and support pages, implying that information meant to aid users is often either incorrect or outdated.

2.PIEChain -- A Practical Blockchain Interoperability Framework

Authors:Daniël Reijsbergen, Aung Maw, Jingchi Zhang, Tien Tuan Anh Dinh, Anwitaman Datta

Abstract: A plethora of different blockchain platforms have emerged in recent years, but many of them operate in silos. As such, there is a need for reliable cross-chain communication to enable blockchain interoperability. Blockchain interoperability is challenging because transactions can typically not be reverted - as such, if one transaction is committed then the protocol must ensure that all related transactions are committed as well. Existing interoperability approaches, e.g., Cosmos and Polkadot, are limited in the sense that they only support interoperability between their own subchains, or require intrusive changes to existing blockchains. To overcome this limitation, we propose PIEChain, a general, Kafka-based cross-chain communication framework. We utilize PIEChain for a practical case study: a cross-chain auction in which users who hold tokens on multiple chains bid for a ticket sold on another chain. PIEChain is the first publicly available, practical implementation of a general framework for cross-chain communication.

3.CroCoDai: A Stablecoin for Cross-Chain Commerce

Authors:Daniël Reijsbergen, Bretislav Hajek, Tien Tuan Anh Dinh, Jussi Keppo, Hank Korth, Anwitaman Datta

Abstract: Decentralized Finance (DeFi), in which digital assets are exchanged without trusted intermediaries, has grown rapidly in value in recent years. The global DeFi ecosystem is fragmented into multiple blockchains, fueling the demand for cross-chain commerce. Existing approaches for cross-chain transactions, e.g., bridges and cross-chain deals, achieve atomicity by locking assets in escrow. However, locking up assets increases the financial risks for the participants, especially due to price fluctuations and the long latency of cross-chain transactions. Stablecoins, which are pegged to a non-volatile asset such as the US dollar, help mitigate the risk associated with price fluctuations. However, existing stablecoin designs are tied to individual blockchain platforms, and trusted parties or complex protocols are needed to exchange stablecoin tokens between blockchains. Our goal is to design a practical stablecoin for cross-chain commerce. Realizing this goal requires addressing two challenges. The first challenge is to support a large and growing number of blockchains efficiently. The second challenge is to be resilient to price fluctuations and blockchain platform failures. We present CroCoDai to address these challenges. We also present three prototype implementations of our stablecoin system, and show that it incurs small execution overhead.

4.Query-Free Evasion Attacks Against Machine Learning-Based Malware Detectors with Generative Adversarial Networks

Authors:Daniel Gibert, Jordi Planes, Quan Le, Giulio Zizzo

Abstract: Malware detectors based on machine learning (ML) have been shown to be susceptible to adversarial malware examples. However, current methods to generate adversarial malware examples still have their limits. They either rely on detailed model information (gradient-based attacks), or on detailed outputs of the model - such as class probabilities (score-based attacks), neither of which are available in real-world scenarios. Alternatively, adversarial examples might be crafted using only the label assigned by the detector (label-based attack) to train a substitute network or an agent using reinforcement learning. Nonetheless, label-based attacks might require querying a black-box system from a small number to thousands of times, depending on the approach, which might not be feasible against malware detectors. This work presents a novel query-free approach to craft adversarial malware examples to evade ML-based malware detectors. To this end, we have devised a GAN-based framework to generate adversarial malware examples that look similar to benign executables in the feature space. To demonstrate the suitability of our approach we have applied the GAN-based attack to three common types of features usually employed by static ML-based malware detectors: (1) Byte histogram features, (2) API-based features, and (3) String-based features. Results show that our model-agnostic approach performs on par with MalGAN, while generating more realistic adversarial malware examples without requiring any query to the malware detectors. Furthermore, we have tested the generated adversarial examples against state-of-the-art multimodal and deep learning malware detectors, showing a decrease in detection performance, as well as a decrease in the average number of detections by the anti-malware engines in VirusTotal.

5.Data Protection for Data Privacy-A South African Problem?

Authors:Venessa Darwin, Mike Nkongolo

Abstract: This study proposes a comprehensive framework for enhancing data security and privacy within organizations through data protection awareness. It employs a quantitative method and survey research strategy to assess the level of data protection awareness among employees of a public organization.